研究生: |
黃詩耘 Huang, Shih-Yun |
---|---|
論文名稱: |
電漿輔助式化學氣相沉積法低溫合成單壁奈米碳管之研究—離子屏蔽與氧氣輔助之影響 Low Temperature Synthesis of Single-Walled Carbon Nanotubes by Plasma Enhanced Chemical Vapor Deposition - Effect of Ion Screen and Oxygen Additive |
指導教授: |
柳克強
Leou, Keh-Chyang 蔡春鴻 Tsai, Chuen-Horng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 奈米碳管 、氧氣 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展以電漿輔助式化學氣相沉積法(Plasma-enhanced Chemical Vapor Deposition, PECVD)低溫合成高品質之單壁奈米碳管(Single-walled Carbon Nanotube, SWNT)方法,主要探討離子屏蔽與氧氣之影響。離子屏蔽即在電漿與基板間以擋板(Shutter)隔離,降低離子轟擊奈米碳管的效應。此外,亦探討在製程之碳氫氣體中加入微量之氧氣,對PECVD合成單壁奈米碳管之影響。所合成之碳管主要以拉曼光譜分析其石墨化品質與產量,此外,並以掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)與穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)分別檢視成長之試片表面形貌與碳管結構。本研究並以電漿放射光譜(Optical Emission Spectrum, OES)探討製程中電漿環境的改變,以了解氧氣影響單壁奈米碳管品質及產量之因素。
實驗結果顯示,本研究成功以PECVD方法於低溫合成單壁奈米碳管,且離子屏蔽成功抑制離子轟擊(Ion Bombardment),而獲得較佳品質的單壁奈米碳管。在離子屏蔽下,碳管品質隨電漿功率及氫氣比例下降而提升;單壁奈米碳管的品質隨著成長時間增加而提升,15至20分鐘時仍可維持穩定,產量隨著成長時間增長而增加。於500 ℃下,氣體比例CH4/H2 = 120/0 sccm/sccm,電漿功率30 W時,獲得最佳品質之單壁奈米碳管,並以此為基礎進行氧氣輔助之研究。
在離子屏蔽下,通入微量氧氣輔助碳管成長,發現當氧氣比例為0.25 %時,單壁奈米碳管之品質可微幅提昇。此外,隨著成長時間增加,單壁奈米碳管品質與產量隨之增加,說明了降低離子轟擊效應對於提升碳管品質之效果遠高於氧氣輔助的成效。因此在擋板結構下,仍可維持穩定品質之單壁奈米碳管。並在離子屏蔽與氧氣輔助之效應的研究中發現,同在擋板結構下,氧氣輔助並無有效提升單壁奈米碳管品質。另一方面,受到擋板保護的單壁奈米碳管品質與產量遠高於不受擋板保護之單壁奈米碳管,相關實驗結果顯示,對奈米碳管品質提升而言,擋板結構屏蔽離子轟擊的貢獻遠高於氧氣平衡C與H之自由基的效應。
經由電漿光譜量測,發現Hα、CH與Hβ之訊號在含氧氣環境中較弱,可能的原因為氧氣與H2及CHx反應生成OH等自由基,平衡製程環境中C與H自由基而獲得較高品質之SWNTs。
此外,在氧氣輔助的部份提出另一種可能的機制:由於氧氣是電負性(Electronegative)氣體,使得電漿電位降低,離子轟擊因而減弱,進而獲得較高品質與產量的奈米碳管。
1. Dresselhaus, M., G. Dresselhaus, and P. Avouris, Carbon Natotubes: Synthesis, Structure, Properties and Applications. 2001.
2. Javey, A., M. Shim, and H.J. Dai, Electrical properties and devices of large-diameter single-walled carbon nanotubes. Applied Physics Letters, 2002. 80(6): p. 1064-1066.
3. Dietzel, D., et al. Analysis of mechanical properties of single wall carbon nanotubes fixed at a tip apex by atomic force microscopy. 2005: Iop Publishing Ltd.
4. Choi, W.B., et al., Fully sealed, high-brightness carbon-nanotube field-emission display. Applied Physics Letters, 1999. 75(20): p. 3129-3131.
5. Cassell, A.M., et al., Large scale CVD synthesis of single-walled carbon nanotubes. Journal of Physical Chemistry B, 1999. 103(31): p. 6484-6492.
6. Cantoro, M., et al., Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Letters, 2006. 6(6): p. 1107-1112.
7. Mahan, A.H., et al., Hot wire chemical vapor deposition of isolated carbon single-walled nanotubes. Applied Physics Letters, 2002. 81(21): p. 4061-4063.
8. Bae, E.J., et al., Low-temperature growth of single-walled carbon nanotubes by plasma enhanced chemical vapor deposition. Chemistry of Materials, 2005. 17(20): p. 5141-5145.
9. Li, Y.M., et al., Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Letters, 2004. 4(2): p. 317-321.
10. Kato, T., et al., Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition. Chemical Physics Letters, 2003. 381(3-4): p. 422-426.
11. Zhong, G.F., et al., Very high yield growth of vertically aligned single-walled carbon nanotubes by point-arc microwave plasma CVD. Chemical Vapor Deposition, 2005. 11(3): p. 127-130.
12. Chiu, C.C., M. Yoshimura, and K. Ueda. Synthesis of carbon nanotubes by microwave plasma-enhanced hot filament chemical vapor deposition. 2008: Elsevier Science Sa.
13. Gohier, A., et al., Limits of the PECVD process for single wall carbon nanotubes growth. Chemical Physics Letters, 2006. 421(1-3): p. 242-245.
14. Meyyappan, M., et al., Carbon nanotube growth by PECVD: a review. Plasma Sources Science & Technology, 2003. 12(2): p. 205-216.
15. Hofmann, S., et al., Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Applied Physics Letters, 2003. 83(22): p. 4661-4663.
16. 蕭仲軒, 氧氣輔助電漿輔助式化學氣相沉積法低溫合成單壁奈米碳管之研究, in 國立清華大學工程與系統工程系碩士論文. 中華民國九十六年八月.
17. Luo, Z.Q., et al., Effect of ion bombardment on the synthesis of vertically aligned single-walled carbon nanotubes by plasma-enhanced chemical vapor deposition. Nanotechnology, 2008. 19(25): p. 6.
18. Kang, H.S., et al., Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system. Chemical Physics Letters, 2001. 349(3-4): p. 196-200.
19. Kojima, Y., et al., Growth of high-quality carbon nanotubes by grid-inserted plasma-enhanced chemical vapor deposition for field emitters. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005. 44(4B): p. 2600-2603.
20. Kishimoto, S., et al., Growth of mm-long carbon nanotubes by grid-inserted plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2005. 44(4A): p. 1554-1557.
21. Park, K.C., et al. Electron emission from a carbon nanotube grown in a hole by using a triode plasma-enhanced chemical vapor deposition. 2006: Korean Physical Soc.
22. Jang, I., et al., Characteristics of carbon nanotubes grown by mesh-inserted plasma-enhanced chemical vapor deposition. Carbon, 2007. 45(15): p. 3015-3021.
23. Kojima, Y., S. Kishimoto, and T. Mizutani, Low-temperature growth of carbon nanotubes by grid-inserted plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007. 46(12): p. 8000-8002.
24. Show, Y. and N. Fukuzumi. Selective growth of CNT by using triode-type radio frequency plasma chemical vapor deposition method. 2007: Elsevier Science Sa.
25. Yabe, Y., et al. Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method. 2004: Elsevier Science Sa.
26. Yamazaki, Y., et al., High-quality carbon nanotube growth at low temperature by pulse-excited remote plasma chemical vapor deposition. Applied Physics Express, 2008. 1(3): p. 3.
27. Hata, K., et al., Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science, 2004. 306(5700): p. 1362-1364.
28. Min, Y.S., et al., Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. Journal of the American Chemical Society, 2005. 127(36): p. 12498-12499.
29. Zhang, G.Y., et al., Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(45): p. 16141-16145.
30. Wen, Q., et al., Oxygen-assisted synthesis of SWNTs from methane decomposition. Nanotechnology, 2007. 18(21): p. 7.
31. Byon, H.R., et al., A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bulletin of the Korean Chemical Society, 2007. 28(11): p. 2056-2060.
32. Kong, J., et al., Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998. 395(6705): p. 878-881.
33. 楊朝順, 電漿輔助化學氣相沉積法合成單層奈米碳管之研究, in 國立清華大學工程與系統科學系碩士論文. 中華民國九十四年八月.
34. Coburn, J.W. and M. Chen, OPTICAL-EMISSION SPECTROSCOPY OF REACTIVE PLASMAS - A METHOD FOR CORRELATING EMISSION INTENSITIES TO REACTIVE PARTICLE DENSITY. Journal of Applied Physics, 1980. 51(6): p. 3134-3136.
35. 林囿延, 電漿輔助化學氣相沈積成長奈米碳纖之電漿量測與特性分析, in 國立清華大學工程與系統科學系碩士論文. 中華民國九十四年.
36. Benndorf, C., P. Joeris, and R. Kroger, MASS AND OPTICAL-EMISSION SPECTROSCOPY OF PLASMAS FOR DIAMOND-SYNTHESIS. Pure and Applied Chemistry, 1994. 66(6): p. 1195-1205.
37. Teii, K., et al., Kinetics and role of C, O, and OH in low-pressure nanocrystalline diamond growth. Journal of Applied Physics, 2000. 87(9): p. 4572-4579.
38. Li, Y.M., et al., Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. Journal of Physical Chemistry B, 2001. 105(46): p. 11424-11431.
39. Zhang, R.Y., et al., Chemical vapor deposition of single-walled carbon nanotubes using ultrathin Ni/Al film as catalyst. Nano Letters, 2003. 3(6): p. 731-735.
40. Seidel, R., et al., Chemical vapor deposition growth of single-walled carbon nanotubes at 600 degrees C and a simple growth model. Journal of Physical Chemistry B, 2004. 108(6): p. 1888-1893.
41. Bae, E.J., et al., Single-walled carbon nanotube growth on glass. Nanotechnology, 2007. 18(1): p. 5.
42. 丁宏哲, 氯氣電漿放射光譜解析, in 國立清華大學工程與系統科學系碩士論文. 中華民國九十一年.
43. http://www.multimodefo.com/Technical%20Information.htm. [cited.
44. 翁政輝, 電感耦合式電漿輔助化學氣相沉積系統中奈米碳管的成長與臨場後處理及拉曼光譜分析, in 國立清華大學工程與系統科學系碩士論文. 中華民國九十三年五月.
45. Liberman, M.A. and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. 1994.