研究生: |
周宗欽 Zhou, Zong-Qin |
---|---|
論文名稱: |
滾印製作高導電之銀奈米線軟性微電極及應用於觸覺感測電子皮 Roll-Printed Highly-Conductive-Flexible Silver Nanowires Microelectrodes and Their Application to Electronic Tactile Sensing Skin |
指導教授: |
洪健中
Hong, Chien-Chong 劉通敏 Liou, Tong-Miin |
口試委員: |
施冠丞
劉安順 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 軟性電子 、銀奈米線 、滾印製程 、觸覺感測 、微電極 |
外文關鍵詞: | flexible electronics, silver nanowire, roll printing, tactile sensing, microelectrode |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
軟性電子在近年中廣泛的被應用於軟性有機發光二極體(OLED)顯示器、觸控面板、穿戴式生理監測裝置等消費性電子產品之中,以往的電子元件基材大都以玻璃或是硬塑膠為主,但受限於其易碎不可撓曲,無法滿足未來軟性電子產品的應用需求。軟性電子講求低成本與大量製造,因為銀奈米線可配合濕式製程與卷對卷(Roll to roll)製程整合,進行大面積連續的製造以降低成本,且銀奈米線擁有優秀的導電度,相較於傳統銀奈米顆粒電極,其高長度與直徑比的結構提供良好的機械性質,銀奈米線排列性可降低接觸電阻進一步提升導電性,因此本研究重點於實現排列銀奈米線微電極製程,並應用於觸覺感測電子皮。
本研究提出以快速滾印製程下,透過以氧電漿處理金屬遮罩之矽膠膜,於矽膠表面形成局部圖案之親水性,滾印於矽膠膜產生的塗墨溶液液膜破裂使銀奈米線往表面張力大的區域沉積,得到圖案化的銀奈米線電極,銀奈米線溶液受到拖曳形成液膜的過程中,排列銀奈米線的流體動力幫助了銀奈米線朝著滾印方向排列。本研究滾印銀奈米線微電極所能達到最小電極線寬為50 μm,並在此情況下展現出6.3 Ω/□的片電阻值,且雙層垂直滾印下更能達到3.1 Ω/□;除此之外,銀奈米線微電極擁有良好撓曲與拉伸抗性,在撓曲半徑2.5 mm下彎曲1500次電阻值僅提升119%;而雙層垂直滾印銀奈米線電極在拉伸應變在達到60%仍保持導電性,相較於單層滾印之銀奈米現只能承受20%的拉伸應變,本研究驗證了雙層垂直相交銀奈米線網絡大幅地提升了拉伸的強度。
最後以創新的滾印銀奈米線微電極,製作了8 × 8的觸覺感測陣列電極,每一個感測點以PDMS為中間層之三明治結構的平行板電容,其壓力感測範圍介於73.5 – 514.5 Pa,靈敏度為0.54 kPa-1。
Flexible electronics have been widely used in consuming electronic products such as wearable health monitoring devices, flexible OLED displays and touch panel in recent years. Most of the conventional electronic component substrates are glass or rigid plastic. Glass and rigid plastic substrates are hard and stable, but restricted by its brittleness and inflexibility. Fabrication of flexible electronics emphasizes low cost and mass production. However, Roll-printed silver nanowires (AgNWs) process can be integrated into roll-to-roll processes to enable high volume and continuous manufacturing with low cost. AgNWs have attracted significant interest for conductive electrodes. Not only its high conductivity but also excellent mechanical compliancy due to the large length-to-diameter aspect ratio structure. In order to solve the junction resistance between AgNWs and surface roughness. Alignment of AgNWs is proposed to improve the problems. This research focuses on development of the highly aligned AgNWs microelectrode by roll-printing, then applied to the tactile sensing electronic skin.
In this study, I developed the fabrication of pattering AgNWs microelectrode by roll-printing process. Through the oxygen plasma treatment on the silicone rubber which is covered with a metal mask. The surface of silicone rubber formed different surface tension. In the one-step roll-printing assembly, the liquid film rupture during to the solvent evaporation. Then the ruptured liquid is driven to the region with higher surface tension and form AgNWs microelectrode. Besides, the interaction between shear-induced hydrodynamic enables the alignment of AgNWs in the direction of drag. In the results, the roll-printed AgNWs microelectrode achieve a minimum line width of 50 μm, and exhibits a low sheet resistance of 6.3 Ω/□ in this case. The double-layer cross-printed AgNWs microelectrodes displayed lower sheet resistance 3.1 Ω/□. In addition, the roll-printed AgNWs microelectrode show the remarkable bending and tensile strength. The resistance is only increased by 119% during 1500 cycle of bending at bending radius 7.5 mm. The double-layer cross-printed AgNWs microelectrode keeps the conduction when uniaxial tensile strain up to 60%. In comparison, the single-layer can withstand only 20% tensile strain. This study demonstrated the tensile strength significantly increasing because of perpendicularly intersecting AgNWs network.
Eventually, an 8 × 8 tactile sensing array was fabricated by an innovative AgNWs microelectrode. Two patterned AgNWs electrodes sandwiched a PDMS layer for a parallel plate capacitor. The pressure sensing range is between 73.5 – 514.5 Pa with the sensitivity 0.54 kPa-1.
[1] Y.-R. Chen, C.-C. Hong, T.-M. Liou, K. C. Hwang and T.-F. Guo, "Roller-Induced Bundling of Long Silver Nanowire Networks for Strong Interfacial Adhesion, Highly Flexible, Transparent Conductive Electrodes," Scientific reports, 2017, 7, 16662.
[2] Y. Liu, M. Pharr and G. A. Salvatore, "Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring," ACS nano, 2017, 11, 9614-9635.
[3] J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi and S. Jung, "Stretchable silicon nanoribbon electronics for skin prosthesis," Nature communications, 2014, 5, 5747.
[4] C. K. Chiang, C. Fincher Jr, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, "Electrical conductivity in doped polyacetylene," Physical review letters, 1977, 39, 1098.
[5] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller‐Meskamp and K. Leo, "Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells," Advanced Functional Materials, 2011, 21, 1076-1081.
[6] T. G. Kim, S. R. Ha, H. Choi, K. Uh, U. Kundapur, S. Park, C. W. Lee, S.-h. Lee, J. Kim and J.-M. Kim, "Polymerizable Supramolecular Approach to Highly Conductive PEDOT: PSS Patterns," ACS applied materials & interfaces, 2017, 9, 19231-19237.
[7] M. F. De Volder, S. H. Tawfick, R. H. Baughman and A. J. Hart, "Carbon nanotubes: present and future commercial applications," science, 2013, 339, 535-539.
[8] T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata and T. Someya, "Stretchable active-matrix organic light-emitting diode display using printable elastic conductors," Nature materials, 2009, 8, 494.
[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, "Electric field effect in atomically thin carbon films," science, 2004, 306, 666-669.
[10] D. Song, A. Mahajan, E. B. Secor, M. C. Hersam, L. F. Francis and C. D. J. A. n. Frisbie, "High-resolution transfer printing of graphene lines for fully printed, flexible electronics," 2017, 11, 7431-7439.
[11] C.-H. Wu, W.-H. Wang, C.-C. Hong and K. C. Hwang, "A disposable breath sensing tube with on-tube single-nanowire sensor array for on-site detection of exhaled breath biomarkers," Lab on a Chip, 2016, 16, 4395-4405.
[12] P.-C. Yu, C.-C. Hong and T.-M. Liou, "Bendable transparent conductive meshes based on multi-layer inkjet-printed silver patterns," Journal of Micromechanics and Microengineering, 2016, 26, 035012.
[13] K. Ellmer, "Past achievements and future challenges in the development of optically transparent electrodes," Nature Photonics, 2012, 6, 809-817.
[14] A. Sánchez-Iglesias, B. Rivas-Murias, M. Grzelczak, J. Pérez-Juste, L. M. Liz-Marzán, F. Rivadulla and M. A. Correa-Duarte, "Highly transparent and conductive films of densely aligned ultrathin Au nanowire monolayers," Nano letters, 2012, 12, 6066-6070.
[15] A. Graff, D. Wagner, H. Ditlbacher and U. Kreibig, "Silver nanowires," The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 2005, 34, 263-269.
[16] J. Liang, K. Tong and Q. Pei, "A Water‐Based Silver‐Nanowire Screen‐Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin‐Film Transistors," Advanced Materials, 2016, 28, 5986-5996.
[17] S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim and H. Ko, "Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices," Nano letters, 2015, 15, 7933-7942.
[18] A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia and P. Yang, "Langmuir− Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy," Nano letters, 2003, 3, 1229-1233.
[19] J. Yao, H. Yan and C. M. Lieber, "A nanoscale combing technique for the large-scale assembly of highly aligned nanowires," Nature nanotechnology, 2013, 8, 329-335.
[20] Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi and A. Javey, "Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing," Nano letters, 2008, 8, 20-25.
[21] S.-k. Duan, Q.-l. Niu, J.-f. Wei, J.-b. He, Y.-a. Yin and Y. Zhang, "Water-bath assisted convective assembly of aligned silver nanowire films for transparent electrodes," Physical Chemistry Chemical Physics, 2015, 17, 8106-8112.
[22] S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan, Y. Lee, J. Park, S. L. Craig and H. Ko, "Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens," ACS nano, 2017, 11, 4346-4357.
[23] F. Yin, H. Lu, H. Pan, H. Ji, S. Pei, H. Liu, J. Huang, J. Gu, M. Li and J. J. S. r. Wei, "Highly sensitive and transparent strain sensors with an ordered Array structure of AgNWs for Wearable Motion and Health Monitoring," 2019, 9, 2403.
[24] B. Dan, G. C. Irvin and M. Pasquali, "Continuous and scalable fabrication of transparent conducting carbon nanotube films," ACS nano, 2009, 3, 835-843.
[25] F. C. J. S. e. m. Krebs and s. cells, "Fabrication and processing of polymer solar cells: a review of printing and coating techniques," 2009, 93, 394-412.
[26] C.-Y. Lo, J. Hiitola-Keinänen, O.-H. Huttunen, J. Petäjä, J. Hast, A. Maaninen, H. Kopola, H. Fujita and H. Toshiyoshi, "Novel roll-to-roll lift-off patterned active-matrix display on flexible polymer substrate," Microelectronic Engineering, 2009, 86, 979-983.
[27] R. R. Søndergaard, M. Hösel and F. C. Krebs, "Roll‐to‐Roll fabrication of large area functional organic materials," Journal of Polymer Science Part B: Polymer Physics, 2013, 51, 16-34.
[28] C. Shi, X. Shan, G. Tarapata, R. Jachowicz, J. Weremczuk and H. Hui, "Fabrication of wireless sensors on flexible film using screen printing and via filling," Microsystem technologies, 2011, 17, 661-667.
[29] W.-Y. Chang, T.-H. Fang, H.-J. Lin, Y.-T. Shen and Y.-C. Lin, "A large area flexible array sensors using screen printing technology," Journal of display technology, 2009, 5, 178-183.
[30] F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen and J. Kristensen, "A complete process for production of flexible large area polymer solar cells entirely using screen printing—first public demonstration," Solar Energy Materials and Solar Cells, 2009, 93, 422-441.
[31] D. Sung, A. de la Fuente Vornbrock and V. Subramanian, "Scaling and optimization of gravure-printed silver nanoparticle lines for printed electronics," IEEE Transactions on Components and Packaging Technologies, 2010, 33, 105-114.
[32] X. Yin and S. Kumar, "Flow visualization of the liquid emptying process in scaled-up gravure grooves and cells," Chemical Engineering Science, 2006, 61, 1146-1156.
[33] G. Cummins and M. P. Desmulliez, "Inkjet printing of conductive materials: a review," Circuit World, 2012, 38, 193-213.
[34] E. Tekin, P. J. Smith and U. S. Schubert, "Inkjet printing as a deposition and patterning tool for polymers and inorganic particles," Soft Matter, 2008, 4, 703-713.
[35] S. Khan, Y. H. Doh, A. Khan, A. Rahman, K. H. Choi and D. S. Kim, "Direct patterning and electrospray deposition through EHD for fabrication of printed thin film transistors," Current Applied Physics, 2011, 11, S271-S279.
[36] B. J. Kang, C. K. Lee and J. H. Oh, "All-inkjet-printed electrical components and circuit fabrication on a plastic substrate," Microelectronic Engineering, 2012, 97, 251-254.
[37] Y. Zheng, Z. He, Y. Gao and J. Liu, "Direct desktop printed-circuits-on-paper flexible electronics," Scientific reports, 2013, 3, 1786.
[38] S. Khan, L. Lorenzelli and R. S. Dahiya, "Technologies for printing sensors and electronics over large flexible substrates: a review," IEEE Sensors Journal, 2015, 15, 3164-3185.
[39] T. Kaufmann and B. J. Ravoo, "Stamps, inks and substrates: polymers in microcontact printing," Polymer Chemistry, 2010, 1, 371-387.
[40] A. Perl, D. N. Reinhoudt and J. Huskens, "Microcontact printing: limitations and achievements," Advanced Materials, 2009, 21, 2257-2268.
[41] C. L. Kuo and K. C. Hwang, "Nitrate ion promoted formation of Ag nanowires in polyol processes: a new nanowire growth mechanism," Langmuir, 2012, 28, 3722-3729.
[42] B. Li, S. Ye, I. E. Stewart, S. Alvarez and B. J. Wiley, "Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%," Nano letters, 2015, 15, 6722-6726.
[43] M. Le Berre, Y. Chen and D. J. L. Baigl, "From convective assembly to Landau− Levich deposition of multilayered phospholipid films of controlled thickness," 2009, 25, 2554-2557.
[44] B. Levich and L. Landau, "Dragging of a liquid by a moving plate," Acta Physicochim. URSS, 1942, 17, 42.
[45] B. Park and M.-y. Han, "Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process," Optics express, 2009, 17, 13830-13840.
[46] H. Jang, D. Kim, H. Tak, J. Nam and T.-i. J. C. A. P. Kim, "Ultra-mechanically stable and transparent conductive electrodes using transferred grid of Ag nanowires on flexible substrate," 2016, 16, 24-30.
[47] A. K. Bhowmick, J. Konar, S. Kole and S. Narayanan, "Surface properties of EPDM, silicone rubber, and their blend during aging," Journal of applied polymer science, 1995, 57, 631-637.
[48] V.-M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz and A. Wokaun, "Photochemical modification of cross-linked poly (dimethylsiloxane) by irradiation at 172 nm," Macromolecules, 2004, 37, 5936-5943.
[49] F. Brochard, "Motions of droplets on solid surfaces induced by chemical or thermal gradients," langmuir, 1989, 5, 432-438.
[50] E. M. Freer, O. Grachev, X. Duan, S. Martin and D. P. Stumbo, "High-yield self-limiting single-nanowire assembly with dielectrophoresis," Nature nanotechnology, 2010, 5, 525.
[51] C. Ayres, G. L. Bowlin, S. C. Henderson, L. Taylor, J. Shultz, J. Alexander, T. A. Telemeco and D. G. J. B. Simpson, "Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform," 2006, 27, 5524-5534.
[52] P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee and S. H. Ko, "Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network," Advanced materials, 2012, 24, 3326-3332.
[53] J. H. Park, G. T. Hwang, S. Kim, J. Seo, H. J. Park, K. Yu, T. S. Kim and K. J. Lee, "Flash‐induced self‐limited plasmonic welding of silver nanowire network for transparent flexible energy harvester," Advanced Materials, 2017, 29, 1603473.
[54] Y.-M. Chang, W.-Y. Yeh and P.-C. Chen, "Highly foldable transparent conductive films composed of silver nanowire junctions prepared by chemical metal reduction," Nanotechnology, 2014, 25, 285601.
[55] Z. Cui, Y. Han, Q. Huang, J. Dong and Y. Zhu, "Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics," Nanoscale, 2018, 10, 6806-6811.
[56] F. Jing, H. Tong, L. Kong and C. Wang, "Electroless gold deposition on silicon (100) wafer based on a seed layer of silver," Applied Physics A, 2005, 80, 597-600.
[57] B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo and X. Chen, "Microstructured graphene arrays for highly sensitive flexible tactile sensors," Small, 2014, 10, 3625-3631.
[58] C. G. Núñez, W. T. Navaraj, E. O. Polat and R. Dahiya, "Energy‐Autonomous, Flexible, and Transparent Tactile Skin," Advanced Functional Materials, 2017, 27,
[59] S. Y. Kim, S. Park, H. W. Park, D. H. Park, Y. Jeong and D. H. Kim, "Highly Sensitive and Multimodal All‐Carbon Skin Sensors Capable of Simultaneously Detecting Tactile and Biological Stimuli," Advanced Materials, 2015, 27, 4178-4185.
[60] L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang and J. A. Rogers, "High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene)," Nature communications, 2013, 4, 1633.
[61] X. Wang, H. Zhang, L. Dong, X. Han, W. Du, J. Zhai, C. Pan and Z. L. Wang, "Self‐powered high‐resolution and pressure‐sensitive triboelectric sensor matrix for real‐time tactile mapping," Advanced materials, 2016, 28, 2896-2903.
[62] M. Ramuz, B. C. K. Tee, J. B. H. Tok and Z. Bao, "Transparent, optical, pressure‐sensitive artificial skin for large‐area stretchable electronics," Advanced Materials, 2012, 24, 3223-3227.
[63] Y. Ko, J. Kim, D. Kim, Y. Yamauchi, J. H. Kim and J. J. S. r. You, "A simple silver nanowire patterning method based on poly (ethylene glycol) photolithography and its application for soft electronics," 2017, 7, 2282.
[64] L. Cai, S. Zhang, Y. Zhang, J. Li, J. Miao, Q. Wang, Z. Yu and C. J. A. M. T. Wang, "Direct printing for additive patterning of silver nanowires for stretchable sensor and display applications," 2018, 3, 1700232.
[65] H. Kim, G. Lee, S. Becker, J.-S. Kim, H. Kim and B. J. J. o. M. C. C. Hwang, "Novel patterning of flexible and transparent Ag nanowire electrodes using oxygen plasma treatment," 2018, 6, 9394-9398.
[66] G.-S. Liu, C. Liu, H.-J. Chen, W. Cao, J.-S. Qiu, H.-P. D. Shieh and B.-R. Yang, "Electrically robust silver nanowire patterns transferrable onto various substrates," Nanoscale, 2016, 8, 5507-5515.