簡易檢索 / 詳目顯示

研究生: 莊子漢
Chuang, Tzu-Han
論文名稱: 三維X光自由曲面微加工系統研發
The development of three-dimensional x-ray free-form micromachining system
指導教授: 雷衛台
Lei, Wei-Tai
傅建中
Fu, Chien-Chung
口試委員: 雷衛台
傅建中
潘榮隆
曾繁根
周敏傑
陳秀香
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 119
中文關鍵詞: 3D微加工X光微影光刻模造成型技術奈米壓電平台運動補償
外文關鍵詞: 3D micromachining, x-ray lithography, LIGA, nano PZT stage, motion compensation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展建構一套三維X光自由曲面微加工系統,此系統基於移動光罩加工的原理,再加進CNC工具機的概念,將光罩視為一把"光刀",藉由光刀的移動,在任意指定位置曝光指定的時間,如此可將傳統X光微影技術由2.5D的加工,擴展成真正3D任意形狀的加工。
    X光3D加工系統的硬體已建構完成,控制系統與模擬程式也已完成 。構建的3D加工系統為一光罩固定/光阻材料運動之系統,搭配兩軸奈米壓電平台,運動解析度可達1.5奈米,運動行程達200微米。運動控制系統驅動二維運動平台並決定單點曝光劑量與Z方向的加工深度。相關的運動誤差經由補償校正後,實際運動與指定運動的誤差小於1.3 %。
    完成加工平台的建構與顯影相關研究後,本研究進行正向加工與逆向加工來驗證系統的加工正確性與可能性,在正向加工方面,給予平台指定的運動路徑與運動速度,配合模擬程式計算出劑量分佈,再經由顯影資料庫將計算的曝光劑量轉換成實際的加工深度,並實際進行加工,比對實際加工結果與模擬結果,驗證正向加工各環節的正確性;在逆向加工方面,載入欲加工的設計結構,經由顯影資料庫反推得理論上的劑量分佈,並由路徑計算程式計算可能的加工路徑,接著進行正向加工程序將結構加工出來,並與原始設計結構進行比對。
    正向加工實驗成功加工各式各樣的3D微結構,加工結構的最大深度從2.7到19.6微米,實際加工結果與模擬結果的整體平均誤差率為7.4 %,表面粗糙度在40奈米以下。在逆向加工方面,方底圓透鏡結構已成功加工,結構深度的平均計算誤差為9.68 %,實際加工結構與設計結構的誤差率為12.79 %。應用於膜蛋白研究之3D複合漸進式微結構也已加工完成,相關的3D簍空懸浮加工技術已經建立,加工結果說明了本文的加工系統與其他X光微影製程結合的可能性。


    This dissertation presents a novel x-ray machining system for the fabrication of three-dimensional microstructures with free-form surfaces. The structures with different sizes and various shapes can be created by a single mask combining with a moving x-ray resist along several precise paths. By adjusting the coefficients of motion such as path types, overlaps and velocities, various microstructures with specific complex features have been successfully fabricated with simple geometric patterns of the mask.
    The x-ray free-form micromachining system consists of a high performance piezoelectrical nano-stage with 1.5 nm resolution and a stroke up to 200 μm. The error of motion is controlled below 1.3 %. Pertinent systematic studies on the lithography apparatus, the fundamental properties of PMMA and the simulation for 3D structuring are undertaken to further clarify the validity of the system. Various 3D PMMA microstructures have been successfully fabricated as a demonstration of the proposed method. The finishing structures have specific characteristics such as axial symmetries and free-form surfaces with the maximum depths varying from 2.7 to 19.6 μm. The average error rate between simulations and experiments is 7.4 % approximately. The average surface roughness is controlled below 40 nm. The result suggests that the circular pattern is superior to the square one for the fabrication in view of good surface roughness
    The new technique of fabricating 3D gradually thinning holes on a suspended film has successfully manufactured a suspended film with the thickness of 2.5 μm. The 3D hybrid structures with dimensions of 0~1.0, 1.2, 1.7 μm are also built.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 符號說明 XIII 1. 前言 1 1.1 研究目的 3 1.2 本文架構 5 2. 文獻回顧 6 2.1 三維微影技術發展 6 2.1.1 傾斜式微影法 7 2.1.2 轉動式微影法 8 2.1.3 多層式微影法 9 2.1.4 複合式微影法 10 2.1.5 背曝式微影法 11 2.1.6 灰階光罩微影法 11 2.1.7 移動光罩微影法 13 2.1.8 本節小結 16 2.2 X光微影機制 16 2.2.1 曝光劑量 17 2.2.2 顯影速率 20 2.2.3 本節小結 21 2.3 X光微影誤差 22 2.3.1 機構誤差 22 2.3.2 光束誤差 22 2.3.3 顯影誤差 24 2.3.4 本節小結 26 3. 實驗設備 28 3.1 X光微影光束線(NSRRC BL19A) 28 3.1.1 簡介 28 3.1.2 鏡組掃描機構 30 3.2 三維X光自由曲面微加工系統 32 3.2.1 硬體設計 33 3.2.2 運動控制 36 3.2.3 運動補償 39 3.2.4 量測與校正 44 3.3 X光光罩 44 3.3.1 光罩製程 45 3.3.2 光罩製作結果 47 3.3.3 熱膨脹誤差 49 3.4 本章小結 50 4. 模擬系統 51 4.1 系統概述 51 4.1.1 理論模型 51 4.1.2 顯影深度資料庫 55 4.1.3 模擬流程 57 4.2 模擬結果與討論 58 4.2.1 加工深度與移動速度 58 4.2.2 剖面輪廓與路徑重疊量 59 4.2.3 門檻劑量 59 4.3 本章小結 60 5. 正向加工實驗 61 5.1 實驗流程 61 5.1.1 材料與方法 61 5.1.2 環形加工路徑 63 5.1.3 掃描加工路徑 65 5.2 加工結果與討論 67 5.2.1 軸對稱微結構 68 5.2.2 自由曲面微結構 75 5.2.3 深度誤差與表面粗糙度 80 5.3 本章小結 82 6. 逆向加工研究 83 6.1 基本概念 83 6.1.1 演算流程 83 6.1.2 模組參數 85 6.2 逆向模組模擬結果 88 6.2.1 標準倒梯形結構範例 88 6.2.2 自由曲面結構範例 91 6.2.3 誤差分析 94 6.2.4 修正模組與結果 97 6.2.5 運動規劃 98 6.3 實際加工範例 99 6.3.1 方底圓透鏡結構加工 99 6.3.2 加工結果與討論 102 6.3.3 三維複合漸進式微結構加工 102 6.3.4 加工結果與討論 104 6.4 本章小結 107 7. 結論 108 參考文獻 110

    [1] W. Menz, J. Mohr and O. Paul, Microsystem technology, Wiley-VCH, 2002.
    [2] S. Filiz, L. Xie, L. E. Weiss and O. B. Ozdoganlar, "Micromilling of microbarbs for medical implants", International Journal of Machine Tools and Manufacture, 48 (2008) 459-472.
    [3] C. R. Friedrich and M. J. Vasile, "Development of the micromilling process for high-aspect-ratio microstructures", Journal of Microelectromechanical Systems, 5 (1996) 33-38.
    [4] J. Li, C. R. Friedrich and R. S. Keynton, "Design and fabrication of a miniaturized, integrated, high-frequency acoustical lens–transducer system", Journal of Micromechanics and Microengineering, 12 (2002) 219-228.
    [5] M. E. Wilson, N. Kota, Y. Kim, Y. Wang, D. B. Stolz, P. R. LeDuc and O. B. Ozdoganlar, "Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography", Lab on a Chip, 11 (2011) 1550-1555.
    [6] R. C. Jaeger, Introduction to microelectronic fabrication, Prentice Hall, 2002.
    [7] S. J. Heo, S. E. Kim, J. Wei, Y. T. Hyun, H. S. Yun, D. H. Kim, J. W. Shin and J. W. Shin, "Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process", Journal of Biomedical Materials Research Part A, 89A (2008) 108-116.
    [8] A. Bonyar, H. Santha, B. Ring, M. Varga, J. G. Kovacs and G. Harsanyi, "3D Rapid Prototyping Technology (RPT) as a powerful tool in microfluidic development", Procedia Engineering, 5 (2010) 291-294.
    [9] D. T. Pham and R. S. Gault, "A comparison of rapid prototyping technologies", International Journal of Machine Tools and Manufacture, 38 (1998) 1257-1287.
    [10] T. R. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam and G. Schubert, "Maskless electron beam lithography: prospects, progress, and challenges", Microelectronic Engineering, 61-62 (2002) 285–293.
    [11] R. E. Howard, L. D. Jackel and W. J. Skocpol, "Nanostructures: Fabrication and Applications", Microelectronic Engineering, 3 (1985) 3–16.
    [12] V. Kudryashov, X. C. Yuan, W. C. Cheong and K. Radhakrishnan, "Grey scale structures formation in SU-8 with e-beam and UV", Microelectronic Engineering, 67-68 (2003) 306–311.
    [13] A. A. Tseng, "Recent developments in micromilling using focused ion beam technology", Journal of Micromechanics and Microengineering, 14 (2004) R15–R34.
    [14] R. Feder, F. Menzel and T. Butz, "Micro-fluidic target chamber machined by proton beam writing for the in situ analysis of gas absorption in synthetic crystals", Nuclear Instruments and Methods in Physics Research Section B, 269 (2011) 2439–2443.
    [15] S. Bolhuis, J. A. van Kan and F. Watt, "Enhancement of proton beam writing in PMMA through optimization of the development procedure", Nuclear Instruments and Methods in Physics Research Section B, 267 (2009) 2302–2305.
    [16] F. Menzel, D. Spemann, S. Petriconi, J. Lenzner and T. Butz, "Proton beam writing of microstructures at the ion nanoprobe LIPSION", Nuclear Instruments and Methods in Physics Research Section B, 250 (2006) 66–70.
    [17] W. K. Hiebert, D. Vick, V. Sauer and M. R. Freeman, "Optical interferometric displacement calibration and thermomechanical noise detection in bulk focused ion beam-fabricated nanoelectromechanical systems", Journal of Microelectromechanical Systems, 20 (2010) 115038.
    [18] E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner and D Munchmeyer, "Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process)", Microelectronic Engineering, 4 (1986) 35–56.
    [19] Y. Utsumi, T. Kishimoto, T. Hattori and H. Hara, "Large area and wide dimensions X-ray lithography using energy variable synchrotron radiation", Microsystem Technologies, 13 (2007) 417–423.
    [20] Y. Li and S. Sugiyama, "Fabrication of micro structures on curve surface by X-ray lithography", Memoirs of the SR Center Ritsumeikan University, 7 (2005) 19-23.
    [21] A. Rogner, J. Eicher, D. Munchmeyer, R. P. Peters and J. Mohr, "The LIGA technique-what are the new opportunities", Journal of Micromechanics and Microengineering, 2 (1992) 133–140.
    [22] H. D. Bauer , W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp and I. Smaglinski, "Polymer waveguide devices with passive pigtailing: an application of LIGA technology", Synthetic Metals, 115 (2000) 13–20.
    [23] K. Rykaczewski, O. J. Hildreth, Dhaval Kulkarni, M. R. Henry, S. K. Kim, C. P. Wong, V. V. Tsukruk and A. G. Fedorov, "Maskless and resist-free rapid prototyping of three-dimensional structures through electron beam induced deposition (EBID) of carbon in combination with metal-assisted chemical etching (MaCE) of silicon", ACS Applied Materials & Interfaces, 2 (2010) 969-975.
    [24] S. W. Youn, M. Takahashi, H. Goto and R. Maeda, "Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques", Journal of Materials Processing Technology, 187-188 (2007) 326–330.
    [25] M. McCormick, E. Chowanietz and A. Lees, "Microengineering design and manufacture using the LIGA process", Engineering Science and Education Journal, 3 (1994) 255-262.
    [26] J. Zhang, M. B. Chan-Park and S. R. Conner, "Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8", Lab on a Chip, 4 (2004) 646–653.
    [27] Y. S. Liao and Y. T. Chen, "Precision fabrication of an arrayed micro metal probe by the laser-LIGA process", Journal of Micromechanics and Microengineering, 15 (2005) 2433–2440.
    [28] H. Lehr and W. Ehrfeld, "Advanced microstructure products by synchrotron radiation lithography", Journal de Physique IV, 4 (1994) 229–236.
    [29] K. Y. Hung, H. T. Hu and F. G. Tseng, "Application 3D glycerol-compensated inclined-exposure technology to integrated optical pick-up head", Journal of Micromechanics and Microengineering, 14 (2004) 975–983.
    [30] D. Y. Oh, K. Gil, S. S. Chang, D. K. Jung, N. Y. Park and S. S. Lee, "A tetrahedral three-facet micro mirror with the inclined deep X-ray process", Sensors and Actuators A, 93 (2001) 157-161.
    [31] C. Cuisin, Y. Chen, D. Decanini, A. Chelnokov, F. Carcenac, A. Madouri, J. M. Lourtioz and H. Launois, "Fabrication of three-dimensional microstructures by high resolution x-ray lithography", Journal of Vacuum Science and Technology B, 17 (1999) 3444-3448.
    [32] Y. C. Lee and S. H. Kuo, "Miniature conical transducer realized by excimer laser micro-machining technique", Sensors and Actuators A, 93 (2001) 57-62.
    [33] Y. C. Lee, C. M. Chen and C. Y. Wu, "A new excimer laser micromachining method for axially symmetric 3D microstructures with continuous surface profiles", Sensors and Actuators A, 117 (2005) 349-355.
    [34] Y. C. Lee, and C. Y. Wu, "Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability", Optics and Lasers in Engineering, 45 (2007) 116-125.
    [35] A. Mata, A. J. Fleischman and S. Roy, "Fabrication of multi-layer SU-8 microstructures", Journal of Micromechanics and Microengineering, 16 (2006) 276–284.
    [36] M. Zhang, J. Wu, L. Wang, K. Xiao and W. Wen, "A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips", Lab on a Chip, 10 (2010) 1199–1203.
    [37] S. J. Moon and S. S. Lee, "Fabrication of microneedle array using inclined LIGA process", Proceedings of the 12th IEEE International Conference on Solid-State Sensors Actuators and Microsystems (Transducers'03) (Boston, USA), (2003) 1546-1549.
    [38] M. Han, W. Lee, S. K. Lee and S. S. Lee, "3D microfabrication with inclined/rotated UV lithography", Sensors and Actuators A, 111 (2004) 14–20.
    [39] N. Matsuzuka, Y. Hirai and O. Tabata, "A novel fabrication process of 3D microstructures by double exposure in deep x-ray lithography (D2XRL)", Journal of Micromechanics and Microengineering, 15 (2005) 2056–2062.
    [40] N. Matsuzuka, Y. Hirai and O. Tabata, "Prediction Method of 3-D Shape Fabricated by Double Exposure Technique in Deep X-Ray Lithography (D2XRL)", Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2006) (Istanbul, Turkey), (2006) 186-189.
    [41] H. Sato, D. Yagyu, S. Ito and S. Shoji, "Improved inclined multi-lithography using water as exposure medium and its 3D mixing microchannel application", Sensors and Actuators A, 128 (2006) 183–190.
    [42] H. Huang, W. Yang, T. Wang, T. Chuang and C. Fu, "3D high aspect ratio micro structures fabricated by one step UV lithography", Journal of Micromechanics and Microengineering, 17 (2007) 291–296.
    [43] C. M. Waits, A. Modafe and R. Ghodssi, "Investigation of gray-scale technology for large area 3D silicon MEMS structures", Journal of Micromechanics and Microengineering, 13 (2003) 170–177.
    [44] K. Totsu, K. Fujishiro, S. Tanaka and M. Esashi, "Fabrication of three-dimensional microstructure using maskless gray-scale lithography", Sensors and Actuators A, 130–131 (2006) 387–392.
    [45] K. Totsu and M. Esashi, "Gray-scale photolithography using maskless exposure system", Journal of Vacuum Science & Technology B, 23 (2005) 1487–1490.
    [46] R. Menon, A. Patel, D. Chao, M. Walsh and H. I. Smith, "Zone-Plate-Array Lithography (ZPAL): Optical Maskless Lithography for Cost-Effective Patterning", Emerging Lithographic Technologies IX, Proceedings of the SPIE (San Jose, USA), (2005) 330-339.
    [47] J. W. Jeon, J. B. Yoon and K. S. Lim, "Sloping profile and pattern transfer to silicon by shape-controllable 3-D lithography and ICP", Sensors and Actuators A, 139 (2007) 281–286.
    [48] M. Fukuda, K. Deguchi, M. Suzuki, Y. Utsumi, "Three-dimensional patterning using fine step motion in synchrotron radiation lithography", Journal of Vacuum Science and Technology B, 24 (2006) 2840–2843.
    [49] O. Tabata, N. Matsuzuka, T. Yamaji, S. Uemura and K. Yamamoto, "3D fabrication by moving mask deep X-ray lithography (M2DXL) with multiple stages", Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2002) (Las Vegas, USA), (2002) 180-183.
    [50] Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya and O. Tabata, "Moving mask UV lithography for three-dimensional structuring", Journal of Micromechanics and Microengineering, 17 (2007) 199-206.
    [51] S. Sugiyama, S. Khumpuang and G. Kawaguch, "Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications", Journal of Micromechanics and Microengineering, 14 (2004) 1399-1404.
    [52] W. Glashauser and G. V. Ghica, Method of stress-free development of irradiated polymethylmetacrylate, in http://www.uspto.gov/ Patent number 4,393,129 Germany: Siemens Aktiengeselschaft, 1983.
    [53] M. J. Rooks, E. Kratschmer, R. Viswanathan, J. Katine, R. E. Fontana, S. A. MacDonald, "Low stress development of poly(methylmethacrylate) for high aspect ratio structures", Journal of Vacuum Science and Technology B, 20 (2002) 2937–2941.
    [54] B. Y. Shew, J. T. Hung, T. Y. Huang, K. P. Liu and C. P. Chou, "High resolution x-ray micromachining using SU-8 resist", Journal of Micromechanics and Microengineering, 13 (2003) 708–713.
    [55] Y. Cheng, N. Y. Kuo and C. H. Su, "Dose distribution of synchrotron x-ray penetrating materials of low atomic numbers", Review of Scientific Instruments, 68 (1997) 2163-2166.
    [56] P. Meyer, J. Schulz and L. Hahn, "DoseSim: Microsoft-Windows graphical user interface for using synchrotron x-ray exposure and subsequent development in the LIGA process", Review of Scientific Instruments, 74 (2003) 1113-1119.
    [57] R. J. Dejus and M. Sanchez del Rio, "XOP: A graphical user interface for spectral calculations and x-ray optics utilities", Review of Scientific Instruments, 67 (1996) 3356-3359.
    [58] C. Welnak, G. J. Chen and F. Cerrina, "SHADOW: A synchrotron radiation and X-ray optics simulation tool", Nuclear Instruments and Methods in Physics Research Section A, 347 (1994) 344-347.
    [59] P. Meyer, A. El-Kholi, J. Mohr, C. Cremers, F. Bouamrane and S. Megtert, "Study of the development behaviour of irradiated foils and microstructure", SPIE Conference Proceedings, 3874 (1999) 312-320.
    [60] W. Schnabel and H. Sotobayashi, "Polymers in electron beam and X-ray lithography", Progress in Polymer Science, 9 (1983) 297-365.
    [61] K. A. Valiev, The physics of submicron lithography, Plenum Publishing Corporation, 1992.
    [62] O. Schmalz, M. Hess and R. Kosfeld, "Structural changes in poly(methyl methacrylate) during deep-etch X-ray synchrotron radiation lithography. Part I: Degradation of the molar mass", Die Angewandte Makromolekulare Chemie, 239 (1996) 63–77.
    [63] O. Schmalz, M. Hess and R. Kosfeld, "Structural changes in poly(methyl methacrylate) during deep-etch X-ray synchrotron radiation lithography. Part II: Radiation effects on PMMA", Die Angewandte Makromolekulare Chemie, 239 (1996) 79–91.
    [64] O. Schmalz, M. Hess and R. Kosfeld, "Structural changes in poly(methyl methacrylate) during deep-etch X-ray synchrotron radiation lithography. Part III: Mode of action of the develope", Die Angewandte Makromolekulare Chemie, 239 (1996) 93–106.
    [65] O. Pekcan and S. Ugur, "Small molecule desorption prior to dissolution of a polymeric glass", Journal of Applied Polymer Science, 101 (2006) 908–912.
    [66] J. S. Greeneich, "Developer characteristics of poly(methyl methacrylate) electron resist", Journal of the Electrochemical Society, 122 (1975) 970-976.
    [67] Z. Liu, F. Bouamrane, M. Roulliay, R. K. Kupka, A. Labeque and S. Megtert, "Resist dissolution rate and inclined-wall structures in deep x-ray lithography", Journal of Micromechanics and Microengineering, 8 (1998) 293-300.
    [68] M. X. Tan, M. A. Bankert, S. K. Griffiths, A. Ting, D. R. Boehme, S. Wilson and L. M. Balser, "PMMA development studies using various synchrotron sources and exposure conditions", SPIE Conference Proceedings, 3512 (1998) 262-270.
    [69] P. Meyer, A El-Kholi and J. Schulz, "Investigations of the development rate of irradiated PMMA microstructures in deep X-ray lithography", Microelectronic Engineering, 63 (2002) 319-328.
    [70] A. Ruzzu and B. Matthis, "Swelling of PMMA-structures in aqueous solutions and room temperature Ni-electroforming", Microsystem Technologies, 8 (2002) 116–119.
    [71] S. H. Goods, R. M. Watson and M. Yi, Thermal expansion and hydration behavior of PMMA molding materials for LIGA applications, SAND REPORT, SAND2003-8000, Sandia National Laboratories, 2003.
    [72] S. K. Griffiths, J. A. W. Crowell, B. L. Kistler and A. S. Dryden, "Dimensional errors in LIGA-produced metal structures due to thermal expansion and swelling of PMMA", Journal of Micromechanics and Microengineering, 14 (2004) 1548–1557.
    [73] G. Feiertag, W. Ehrfeld, H. Lehr, A. Schmidt and M. Schmidt, "Calculation and experimental determination of the structure transfer accuracy in deep x-ray lithography", Journal of Micromechanics and Microengineering, 7 (1997) 323–331.
    [74] H. Zumaque, G. A. Kohring and J. Hormes, "Simulational studies of energy deposition and secondary processes in deep x-ray lithography", Journal of Micromechanics and Microengineering, 7 (1997) 79–88.
    [75] S. K. Griffiths, "Fundamental limitations of LIGA x-ray lithography: sidewall offset, slope and minimum feature size", Journal of Micromechanics and Microengineering, 14 (2004) 999–1011.
    [76] A. C. Henry, R. L. McCarley, S. Das, C. Khan Malek and D. S. Poche, "Structural changes in PMMA under hard X-ray irradiation", Microsystem Technologies, 4 (1998) 104–109.
    [77] C. Khan Malek and S. Das, "Swelling behaviour of poly(methylmethacrylate) thick resist layers in deep X-ray lithography", Journal of Synchrotron Radiation, 10 (2003) 272–279.
    [78] L. L. Hunter, D. M. Skala and B. S. Levey, "Investigation of sidewall cracking in PMMA LIGA structures", Journal of Micromechanics and Microengineering, 16 (2006) 1181–1188.
    [79] A. El-Kholi, J. Mohr and R. Stransky, "Ultrasonic supported development of irradiated micro-structures", Microelectronic Engineering, 23 (1994) 219-222.
    [80] J. Zanghellini, A. El-Kholi and J. Mohr, "Development behaviour of irradiated microstructures", Microelectronic Engineering, 35 (1997) 409-412.
    [81] J. Zanghellini, S. Achenbach, A. El-Kholi, J. Mohr and F. J. Pantenburg, "New development strategies for high aspect ratio microstructures", Microsystem Technologies, 4 (1998) 94-97.
    [82] M. C. Chou, C. T. Pan, T. T. Wu and C.T. Wu, "Study of deep X-ray lithography behaviour for microstructures", Sensors and Actuators A, 141 (2008) 703-711.
    [83] C. M. Cheng and R. H. Chen, "Development behaviours and microstructure quality of downward-development in deep x-ray lithography", Journal of Micromechanics and Microengineering, 11 (2001) 692-696.
    [84] T. Chuang, M. Jiang, B, Shew, W. Lei and C. Fu, "Swelling phenomena of PMMA with x-ray lithography", Proceedings of the 8th International Workshop on High-Aspect-Ratio Micro-Structure Technology (HARMST 2009) (Saskatoon, Canada), (2009) 23–4.
    [85] J. T. Kim, S. P. Han and M. Y. Jeong, "A modified DXRL process for fabricating a polymer microstructure", Journal of Micromechanics and Microengineering, 14 (2004) 256–262.
    [86] Y. Cheng, B. Y. Shew, C. Y. Lin and D. H. Wei, "Deep X-ray lithography developed at SRRC", Proceedings of the National Science Council Republic of China part A, 23 (1999) 537-543.
    [87] H. Kaizuka and B. Siu, " A simple way to reduce hysteresis and creep when using piezoelectric actuators", Japanese journal of applied physics, 27 (1988) 773–776.
    [88] S. Lining, R. Changhai, R. Weibin, C. Liguo and K. Minxiu, "Tracking control of piezoelectric actuator based on a new mathematical model", Journal of Micromechanics and Microengineering, 14 (2004) 1439–1444.
    [89] G. Schitter and A. Stemmer, "Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy", PIEEE Transactions on Control Systems Technology, 12 (2004) 449–454.
    [90] H. Richter, E. A. Misawa and D. A. Lucca, "Characterization of nonlinearities in a piezoelectric positioning device", Proceedings of the 1997 IEEE International Conference on Control Applications (Hartford, CT, USA), (1997) 717–720.
    [91] C. Khan Malek, K. H. Jackson, W. D Bonivert and J. Hruby, "Masks for high aspect ratio x-ray lithography", Journal of Micromechanics and Microengineering, 6 (1996) 228–235.
    [92] Y. Cheng, B. Y. Shew, C. Y. Lin, D. H. Wei and M. K. Chyu, "Ultra-deep LIGA process", Journal of Micromechanics and Microengineering, 9 (1999) 58–63.
    [93] W. J. Kang, E. Rabe, S. Kopetz and A. Neyer, "Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography", Journal of Micromechanics and Microengineering, 16 (2006) 821–831.
    [94] Y. Hirai, S. Hafizovic, N. Matsuzuka, J. G. Korvink and O. Tabata, "Validation of X-ray lithography and development simulation system for moving mask deep X-ray lithography", Journal of Microelectromechanical Systems, 15 (2006) 159–168.
    [95] S. K. Griffiths, J. M. Hruby and A. Ting, "The influence of feature sidewall tolerance on minimum absorber thickness for LIGA x-ray masks", Journal of Micromechanics and Microengineering, 9 (1999) 353–361.
    [96] S. Hafizovic, Y. Hirai, O. Tabata and J. G. Korvink, "X3D: 3D X-ray lithography and development simulation for MEMS", Proceedings of the 12th IEEE International Conference on Solid-State Sensors Actuators and Microsystems (Transducers'03) (Boston, USA), (2003) 1570–1573.
    [97] C. M. Egert, R. Wood and C. Khan Malek, "Dimensional variation and roughness of LIGA fabricated microstructures", SPIE Conference Proceedings, 2880 (1996) 200-209.
    [98] Y. Cheng, C. N. Chen, C. C. Chieng, F. G. Tseng and J. T. Sheu, "Surface roughness control by energy shift in deep X-ray lithography", Microsystem Technologies, 9 (2003) 163–166.
    [99] S. McNamara, "Development rate of PMMA exposed to synchrotron x-ray radiation for LIGA applications", Journal of Micromechanics and Microengineering, 21 (2011) 015002.
    [100] K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model", Applied Physics Letters, 77 (2000) 1617–1619.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE