簡易檢索 / 詳目顯示

研究生: 蔡進賢
Tsai Chin-Hsien
論文名稱: 建立誘導型腺病毒攜帶細胞激素3基因對攝護腺癌的治療模式
Construction of tetracycline-induced adenovirus IL-3 gene expression system for prostate cancer therapy
指導教授: 江啟勳
Chiang Chi-Shiun
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 47
中文關鍵詞: 細胞激素3攝護腺癌基因治療四環黴素植入式滲透壓膠囊細胞毒殺型T細胞
外文關鍵詞: Interleukin 3, prostate cancer, gene therapy, tetracycline, osmotic pump, cytotoxic T lymphocytes
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞激素3(IL-3)為一個調控幹細胞分化與增生的造血因子。先前的研究指出,IL-3修飾過的腫瘤將會減緩它在老鼠體內的生長速率。並且IL-3可以加強細胞毒性T細胞對外生型抗原的辨識,進而抑制轉移的癌細胞。因此利用IL-3作為癌症治療將是一個很有潛力的方式。但是在生物體內大量表現IL-3,將造成嚴重的副作用。因此,在這研究中,將建立一個誘導型的線病毒攜帶細胞激素3的表現系統作為攝護腺癌的基因治療之用。利用BD adenovirus Tet-on 系統為載體將基因帶到腫瘤上,其優點在於基因的表現可以被四環黴素所調控,以降低基因治療的風險;而利用線病毒載體,將可使IL-3大量且局部的表現在腫瘤位置,更有效的去提高對腫瘤的免疫反應。
    細胞激素3的表現量取決於四環黴素的濃度。在實驗中,使用了兩種不同的運送系統,將四環黴素運送到目標細胞。實驗結果顯示,利用Alzet osmotic pump 運送藥物比藉由飲用水吸收更有效率。運送效率的不同可以進一步的從腫瘤生長延緩的程度中看出。利用小鼠攝護腺癌模式(TRAMP C-1)去評估IL-3對抑制腫瘤生長的影響,結果顯示IL-3會減緩腫瘤的生長,並增加腫瘤組織內浸潤的免疫細胞,但是所誘導的細胞毒殺反應仍然不足以排除腫瘤,這表示此治療模式應該再結合其他治療方式如放射線治療,以達到最有效的成果。


    Interleukin 3 (IL-3) is a hematopoietic factor and can stimulate stem cell proliferation and differentiation. In previous studies, IL-3 transduced tumors grow slower than parental tumors in vivo. Besides, IL3 could enhance CTL generation to exogenous antigen and then suppress metastatic cancer. Therefore, IL-3 gene therapy will be a potential approach for treatment of cancer. However, the large amount of IL-3 expression in host will result in systemic side effect. In this study, I will establish an inducible adenovirus IL-3 gene expression system for prostate cancer therapy. The adenovirus Tet-on system (BD) was used as gene vector to deliver IL-3 gene to tumor cell. The advantage of Tet-on system is that the inserted gene can be regulated by doxycycline (Dox) to reduce the risk of gene therapy. Moreover, the intratumoral expression of IL-3 by adenovirus can concentrate the IL-3 protein inside tumor and was more effective in enhancing the IL-3 elicited tumor-specific cellular immunity.
    The expression level of IL-3 depends on the concentration of Dox both in vitro and in vivo. In this study, two procedures were used to deliver Dox to the target in vivo. The results demonstrated that it is more efficient to deliver the Dox by Alzet osmotic pump than by drinking water uptake. This effect was further reflected in a longer tumor growth delay. The antitumor effect of IL-3 was evaluated in a mouse mode of prostate cancer (TRAMP C-1). During the early stage of tumor development, IL-3 treated tumors displayed a slower growth rate compared with control tumors. The expression of IL-3 within tumors increased the amount of tumor-infiltrating lymphocytes (TILs). However, this effect was not able to induce enough CTL response to reject the tumor. It is therefore suggested to combine this system with others, such as radiation therapy, for treatment of prostate cancer.

    中文摘要 I ABSTRACT II 誌謝 IV CONTENTS V INTRODUCTION 1 Immunotherapy for malignancies 1 Cytokine gene therapy 3 Interleukin 3 4 The murine prostate cancer cell line - TRAMP C-1 5 Tet-On system 6 MATERIALS AND METHODS 7 Mice and cell lines 7 Constructing recombinant adenoviral DNA 8 Production and purification of recombinant adenovirus 9 Assessment of adenovirus gene expression in vitro 10 In vivo experimental protocol 11 Determination of IL-3 in tumor and blood by ELISA 12 Analysis of tumor-infiltrating host cells 12 X-gal staining 13 Cytotoxicity assay 14 Generation of bone marrow-derived mast cell 15 Functional analysis and phagocytosis assay of mast cell 16 RESULTS 17 Characterization of tetracycline-induced adenovirus expression system 17 Influence of in vivo IL-3 expression on the growth of TRAMP C-1 tumor 18 The influence of IL-3 gene expression on tumor composition 19 Immunity Assay 20 Functional assay of bone-marrow derived mast cells 21 DISCUSSION 22 REFERENCE 27 FIGURES 32

    1. Gottschalk, A. R. and Roach, M., 3rd The use of hormonal therapy with radiotherapy for prostate cancer: analysis of prospective randomised trials. Br J Cancer, 90: 950-954, 2004.
    2. Soyuer, S., Chang, E. L., Selek, U., McCutcheon, I. E., and Maor, M. H. Intracranial meningeal hemangiopericytoma: the role of radiotherapy: report of 29 cases and review of the literature. Cancer, 100: 1491-1497, 2004.
    3. Vaidya, J. S., Tobias, J. S., Baum, M., Keshtgar, M., Joseph, D., Wenz, F., Houghton, J., Saunders, C., Corica, T., D'Souza, D., Sainsbury, R., Massarut, S., Taylor, I., and Hilaris, B. Intraoperative radiotherapy for breast cancer. Lancet Oncol, 5: 165-173, 2004.
    4. Cuncins-Hearn, A., Saunders, C., Walsh, D., Borg, M., Buckingham, J., Frizelle, F., and Maddern, G. A systematic review of intraoperative radiotherapy in early breast cancer. Breast Cancer Res Treat, 85: 271-280, 2004.
    5. Tucker, S. L., Cheung, R., Dong, L., Liu, H. H., Thames, H. D., Huang, E. H., Kuban, D., and Mohan, R. Dose-volume response analyses of late rectal bleeding after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys, 59: 353-365, 2004.
    6. Cross, C. K., Berman, S., Buswell, L., Johnson, B., and Baldini, E. H. Prospective study of palliative hypofractionated radiotherapy (8.5 Gy x 2) for patients with symptomatic non-small-cell lung cancer. Int J Radiat Oncol Biol Phys, 58: 1098-1105, 2004.
    7. Taylor, R. E. Review of radiotherapy dose and volume for intracranial ependymoma. Pediatr Blood Cancer, 42: 457-460, 2004.
    8. Gudkov, A. V. and Komarova, E. A. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer, 3: 117-129, 2003.
    9. Agarwal, R. and Kaye, S. B. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer, 3: 502-516, 2003.
    10. Roodman, G. D. Mechanisms of bone metastasis. N Engl J Med, 350: 1655-1664, 2004.
    11. Hunter, K. W. Host genetics and tumour metastasis. Br J Cancer, 90: 752-755, 2004.
    12. Timar, J., Csuka, O., Orosz, Z., Jeney, A., and Kopper, L. Molecular pathology of tumor metastasis. I. Predictive pathology. Pathol Oncol Res, 7: 217-230, 2001.
    13. Agarwala, S. S., Hellstrand, K., Gehlsen, K., and Naredi, P. Immunotherapy with histamine and interleukin 2 in malignant melanoma with liver metastasis. Cancer Immunol Immunother, 2004.
    14. Ruttinger, D., Li, R., Urba, W. J., Fox, B. A., and Hu, H. M. Evaluation of a preclinical model of bone metastasis for the study of adoptive immunotherapy. Eur Surg Res, 35: 346-351, 2003.
    15. Movassagh, M., Spatz, A., Davoust, J., Lebecque, S., Romero, P., Pittet, M., Rimoldi, D., Lienard, D., Gugerli, O., Ferradini, L., Robert, C., Avril, M. F., Zitvogel, L., and Angevin, E. Selective accumulation of mature DC-Lamp+ dendritic cells in tumor sites is associated with efficient T-cell-mediated antitumor response and control of metastatic dissemination in melanoma. Cancer Res, 64: 2192-2198, 2004.
    16. Saika, T., Satoh, T., Kusaka, N., Ebara, S., Mouraviev, V. B., Timme, T. L., and Thompson, T. C. Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model. Cancer Gene Ther, 11: 317-324, 2004.
    17. Tatsumi, T., Huang, J., Gooding, W. E., Gambotto, A., Robbins, P. D., Vujanovic, N. L., Alber, S. M., Watkins, S. C., Okada, H., and Storkus, W. J. Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res, 63: 6378-6386, 2003.
    18. Unanue, E. R. Perspective on antigen processing and presentation. Immunol Rev, 185: 86-102, 2002.
    19. Lenschow, D. J. and Bluestone, J. A. T cell co-stimulation and in vivo tolerance. Curr Opin Immunol, 5: 747-752, 1993.
    20. Berzofsky, J. A., Terabe, M., Oh, S., Belyakov, I. M., Ahlers, J. D., Janik, J. E., and Morris, J. C. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest, 113: 1515-1525, 2004.
    21. Simons, J. W., Mikhak, B., Chang, J. F., DeMarzo, A. M., Carducci, M. A., Lim, M., Weber, C. E., Baccala, A. A., Goemann, M. A., Clift, S. M., Ando, D. G., Levitsky, H. I., Cohen, L. K., Sanda, M. G., Mulligan, R. C., Partin, A. W., Carter, H. B., Piantadosi, S., Marshall, F. F., and Nelson, W. G. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res, 59: 5160-5168, 1999.
    22. Houde, M., Bertholet, S., Gagnon, E., Brunet, S., Goyette, G., Laplante, A., Princiotta, M. F., Thibault, P., Sacks, D., and Desjardins, M. Phagosomes are competent organelles for antigen cross-presentation. Nature, 425: 402-406, 2003.
    23. Ackerman, A. L., Kyritsis, C., Tampe, R., and Cresswell, P. Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proc Natl Acad Sci U S A, 100: 12889-12894, 2003.
    24. Guermonprez, P., Saveanu, L., Kleijmeer, M., Davoust, J., Van Endert, P., and Amigorena, S. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature, 425: 397-402, 2003.
    25. Bellone, M., Camporeale, A., and Boni, A. Dendritic cell activation kinetics and cancer immunotherapy. J Immunol, 172: 2727-2728, 2004.
    26. Figdor, C. G., de Vries, I. J., Lesterhuis, W. J., and Melief, C. J. Dendritic cell immunotherapy: mapping the way. Nat Med, 10: 475-480, 2004.
    27. Woo, E. Y., Chu, C. S., Goletz, T. J., Schlienger, K., Yeh, H., Coukos, G., Rubin, S. C., Kaiser, L. R., and June, C. H. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res, 61: 4766-4772, 2001.
    28. Fayad, L., Keating, M. J., Reuben, J. M., O'Brien, S., Lee, B. N., Lerner, S., and Kurzrock, R. Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood, 97: 256-263, 2001.
    29. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 4: 11-22, 2004.
    30. Atzpodien, J., Hoffmann, R., Franzke, M., Stief, C., Wandert, T., and Reitz, M. Thirteen-year, long-term efficacy of interferon 2alpha and interleukin 2-based home therapy in patients with advanced renal cell carcinoma. Cancer, 95: 1045-1050, 2002.
    31. Pulaski, B. A., Yeh, K. Y., Shastri, N., Maltby, K. M., Penney, D. P., Lord, E. M., and Frelinger, J. G. Interleukin 3 enhances cytotoxic T lymphocyte development and class I major histocompatibility complex "re-presentation" of exogenous antigen by tumor-infiltrating antigen-presenting cells. Proc Natl Acad Sci U S A, 93: 3669-3674, 1996.
    32. Yeh, K. Y., McAdam, A. J., Pulaski, B. A., Shastri, N., Frelinger, J. G., and Lord, E. M. IL-3 enhances both presentation of exogenous particulate antigen in association with class I major histocompatibility antigen and generation of primary tumor-specific cytolytic T lymphocytes. J Immunol, 160: 5773-5780, 1998.
    33. Clark, S. C. and Kamen, R. The human hematopoietic colony-stimulating factors. Science, 236: 1229-1237, 1987.
    34. McBride, W. H., Dougherty, G. D., Wallis, A. E., Economou, J. S., and Chiang, C. S. Interleukin-3 in gene therapy of cancer. Folia Biol (Praha), 40: 62-73, 1994.
    35. Chiang, C. S., Syljuasen, R. G., Hong, J. H., Wallis, A., Dougherty, G. J., and McBride, W. H. Effects of IL-3 gene expression on tumor response to irradiation in vitro and in vivo. Cancer Res, 57: 3899-3903, 1997.
    36. Chiang, C. S., Hong, J. H., Wu, Y. C., McBride, W. H., and Dougherty, G. J. Combining radiation therapy with interleukin-3 gene immunotherapy. Cancer Gene Ther, 7: 1172-1178, 2000.
    37. Haig, D. M., Huntley, J. F., MacKellar, A., Newlands, G. F., Inglis, L., Sangha, R., Cohen, D., Hapel, A., Galli, S. J., and Miller, H. R. Effects of stem cell factor (kit-ligand) and interleukin-3 on the growth and serine proteinase expression of rat bone-marrow-derived or serosal mast cells. Blood, 83: 72-83, 1994.
    38. Lantz, C. S., Boesiger, J., Song, C. H., Mach, N., Kobayashi, T., Mulligan, R. C., Nawa, Y., Dranoff, G., and Galli, S. J. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature, 392: 90-93, 1998.
    39. Raposo, G., Tenza, D., Mecheri, S., Peronet, R., Bonnerot, C., and Desaymard, C. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell, 8: 2631-2645, 1997.
    40. Skokos, D., Botros, H. G., Demeure, C., Morin, J., Peronet, R., Birkenmeier, G., Boudaly, S., and Mecheri, S. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol, 170: 3037-3045, 2003.
    41. Foster, B. A., Gingrich, J. R., Kwon, E. D., Madias, C., and Greenberg, N. M. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res, 57: 3325-3330, 1997.
    42. Greenberg, N. M., DeMayo, F., Finegold, M. J., Medina, D., Tilley, W. D., Aspinall, J. O., Cunha, G. R., Donjacour, A. A., Matusik, R. J., and Rosen, J. M. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A, 92: 3439-3443, 1995.
    43. Liu, L., Chahroudi, A., Silvestri, G., Wernett, M. E., Kaiser, W. J., Safrit, J. T., Komoriya, A., Altman, J. D., Packard, B. Z., and Feinberg, M. B. Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates. Nat Med, 8: 185-189, 2002.
    44. Mazzolini, G., Prieto, J., and Melero, I. Gene therapy of cancer with interleukin-12. Curr Pharm Des, 9: 1981-1991, 2003.
    45. Wong, P. M., Chung, S. W., Dunbar, C. E., Bodine, D. M., Ruscetti, S., and Nienhuis, A. W. Retrovirus-mediated transfer and expression of the interleukin-3 gene in mouse hematopoietic cells result in a myeloproliferative disorder. Mol Cell Biol, 9: 798-808, 1989.
    46. Dan, Y., Katakura, Y., Ametani, A., Kaminogawa, S., and Asano, Y. IL-3 augments TCR-mediated responses of type 2 CD4 T cells. J Immunol, 156: 27-34, 1996.
    47. Storozynsky, E., Woodward, J. G., Frelinger, J. G., and Lord, E. M. Interleukin-3 and granulocyte-macrophage colony-stimulating factor enhance the generation and function of dendritic cells. Immunology, 97: 138-149, 1999.
    48. Ebner, S., Hofer, S., Nguyen, V. A., Furhapter, C., Herold, M., Fritsch, P., Heufler, C., and Romani, N. A novel role for IL-3: human monocytes cultured in the presence of IL-3 and IL-4 differentiate into dendritic cells that produce less IL-12 and shift Th cell responses toward a Th2 cytokine pattern. J Immunol, 168: 6199-6207, 2002.
    49. McLachlan, J. B., Hart, J. P., Pizzo, S. V., Shelburne, C. P., Staats, H. F., Gunn, M. D., and Abraham, S. N. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat Immunol, 4: 1199-1205, 2003.
    50. Ott, V. L., Cambier, J. C., Kappler, J., Marrack, P., and Swanson, B. J. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4. Nat Immunol, 4: 974-981, 2003.
    51. Schoenberger, S. P. BLT for speed. Nat Immunol, 4: 937-939, 2003.
    52. Leskinen, M., Wang, Y., Leszczynski, D., Lindstedt, K. A., and Kovanen, P. T. Mast cell chymase induces apoptosis of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 21: 516-522, 2001.
    53. Latti, S., Leskinen, M., Shiota, N., Wang, Y., Kovanen, P. T., and Lindstedt, K. A. Mast cell-mediated apoptosis of endothelial cells in vitro: a paracrine mechanism involving TNF-alpha-mediated down-regulation of bcl-2 expression. J Cell Physiol, 195: 130-138, 2003.
    54. Wedemeyer, J., Tsai, M., and Galli, S. J. Roles of mast cells and basophils in innate and acquired immunity. Curr Opin Immunol, 12: 624-631, 2000.
    55. Theoharides, T. C. and Conti, P. Mast cells: the JEKYLL and HYDE of tumor growth. Trends Immunol, 25: 235-241, 2004

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE