研究生: |
江承樸 Chiang, Cheng-Pu |
---|---|
論文名稱: |
利用Python模擬太陽能電池單二極體模型加上MOSFET電路在部分遮蔭情況下之運作 Single Diode Model Solar Cell and MOSFET Circuit Simulation Under Partial Shading Conditions Using Python |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
李明昌
Lee, Ming-Chang 陳昇暉 Chen, Sheng-Hui |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 太陽能電池 、遮蔭 、模擬 |
外文關鍵詞: | Python, Simulation, Solar cell |
相關次數: | 點閱:74 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文是利用電腦軟體Python以模擬電阻、二極體、電流源形成太陽能電池的等效電路,其中還加上MOSFET和比較器以達到控制並調整電路的結果。以軟體模擬完I-V曲線後,將其結果繪製成圖片,並進一步計算其開路電壓、短路電流、最大功率點電壓、最大功率點電流、最大功率點功率、填充因子和轉換效率。
本次研究先從模擬單一個太陽能電池的I-V曲線開始,接下來再將72個相同的太陽能電池串聯成一個3x24的太陽能模組,模擬每一組共24片中的其中幾片太陽能電池被遮蔭時太陽能模組的I-V曲線會如何變化。另外,我們模擬了好幾個不同位置的遮蔭情形,在不同的旁路二極體係數以及不同的遮蔭比例下的I-V曲線,可以得到現在市面上使用的太陽能模組的數據。最後,在加上我們設計的MOSFET和比較器後,模擬出3x24的太陽能模組有無遮蔭情形的I-V曲線並且計算其數據的變化,比較市面上的模組以及我們設計的電路模組間的差異,並確認我們的想法能否在成本及理論上實現。
在其中,我們也利用Python去測量模組中電池的電壓,旁路二極體的電壓、電流等,試圖讓我們更了解太陽能模組的運作情形及機制。最後,希望透過當前最合理以及有效率的方式來達成更好的結果。
In this thesis, we simulate an equivalent circuit of a solar cell composed of resistors, diodes, and current sources by using software Python. Additionally, a MOSFET and a comparator are incorporated to control and adjust the circuit results. After simulating the I-V curve using the software, the results are plotted into graphs, and further calculations are made for open-circuit voltage, short-circuit current, maximum power point voltage, maximum power point current, maximum power point power, fill factor, and conversion efficiency.
The research begins by simulating the I-V curve of a single solar cell. Then, 72 identical solar cells are connected in series to form a 3x24 solar module. The I-V curve changes of the solar module are simulated when one of the 24 cells in a group is shaded. Additionally, we simulated several different shading scenarios with varying bypass diode coefficients and shading ratios to obtain data for solar modules currently available on the market. Finally, after incorporating our designed MOSFET and comparator, we simulated the I-V curves of the 3x24 solar module under both shaded and unshaded conditions and calculated the variations in the data. We compared the differences between commercially available modules and our designed circuit modules to verify whether our concept could be realized in terms of cost and theory.
In addition, we used Python to measure the voltage of the cells in the module, as well as the voltage and current of the bypass diodes, to gain a better understanding of the operation and mechanism of the solar module. Ultimately, we hope to achieve better results through the most reasonable and efficient method currently available.
[1] International Energy Outlook 2021
https://www.eia.gov/outlooks/ieo/pdf/IEO2021_Narrative.pdf
[2] Oluwaseun James Oguntuase , “Climate Change, Credit Risk and Financial Stability’’
[3] Rui Fang, WenJun Zhang, ShaSha Zhang, Wei Chen, “The rising star in photovoltaics-perovskite solar cells: The past, present and future’’, Science China-Technological Sciences, 2016. 59(7): p. 989-1006.
[4] IEA Electricity Statistics https://www.iea.org/energy-system/electricity
[5] Amita Yadav, Pawan Kumar, “Enhancement in Efficiency of PV Cell through P&O Algorithm’’, International Journal for Technological Research in Engineering, 2015.2: 2642-2644.
[6] Wikipedia: Solar cell #History https://en.wikipedia.org/wiki/Solar_cell#History
[7] W. Smith, “Effect of light on selenium during the passage of an electric current’’, Nature, 1873. 7(173): p. 303-303
[8] P. Gevorkian, Sustainable energy systems engineering: the complete green building design resource, McGraw Hill Professional, 2007. ISBN 978-0-07-147359-0.
[9] ''The Nobel Prize in Physics 1921: Albert Einstein'', Nobel Prize official page.
[10] V. E., Lashkaryov, “Investigation of a barrier layer by the thermoprobe method’’, 1941. Archived 28 September 2015 at the Wayback Machine, Izv. Akad. Nauk SSSR, Ser. Fiz. 5, p. 442-446, English translation: Ukr. J. Phys., 2008 53: p. 53-56.
[11] “Light sensitive device’’ U.S. Patent 2,402,662 Issue date: June 1946.
[12] “April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell”, APS News. American Physical Society, 2009, 18(4)
[13] K.A. Tsokos, Physics for the IB diploma full colour, Cambridge University
Press, 2010. ISBN 978-0-521-13821-5.
[14] D.M. Chapin, C.S. Fuller and G.L. Pearson, "A new silicon p-n junction
photocell for converting solar radiation into electrical power," Journal of Applied
Physics, 1954. 25: p. 676-677.
[15] W. Shockley, H.J Queisser "Detailed balance limit of efficiency of p-n
junction solar cells," Journal of Applied Physics, 1961. 32: p. 510-519.
[16] A. Kovach, “Effects of inhomogeneous irradiation distribution on a PV array in an urban environment”
[17] W. Knaupp, “Evaluation of PV module designs at irregular operation conditions”
[18] W. Herrmann;W. Wiesner;W. Vaassen, “Hot spot investigations on PV modules-new concepts for a test standard and consequences for module design with respect to bypass diodes”
[19] H. Nagayoshi; M. Atesh, “Partial Shading effect emulation using multi small scale module simulator units’’
[20] R. Candela; V. di Dio; E. Riva Sanseverino; P. Romano, “Reconfiguration Techniques of Partial Shaded PV Systems for the Maximization of Electrical Energy Production’’
[21] S. Silvestre; A. Chouder, “Shading effects in characteristic parameters of PV modules’’
[22] A. Kajihara; A.T. Harakawa, “Model of Photovoltaic Cell Circuits under Partial Shading’’
[23] Qi Zhang and Qun Li, “Temperature and Reverse Voltage across a Partially Shaded Si PV Cell under Hot Spot Test Condition’’
[24] S. Lyden; M. E. Haque, “Comparison of the Perturb and Observe and Simulated Annealing Approaches for Maximum Power Point Tracking in a Photovoltaic System Under Partial Shading Conditions’’
[25] Takayuki Yamamoto, Daisuke Wagi, Ikuo Nanno, “New Coupled Model for Prediction of the Temperature Distribution in a PV Cell with a Hot Spot Induced by Partial Shading’’
[26] J.C. Teo, Tan, R.H.G. Mok, V.H., Ramachandaramurthy, V.K., C. Tan,
"Impact of partial shading on the P-V Characteristics and the maximum power of a
photovoltaic string", Energies, 2018. 11(7): p. 1860.
[27] S. Silvestre, A. Boronat and A. Chouder, "Study of bypass diodes configuration
on PV modules", Appl. Energy,2009 86: p. 1632-1640.
[28] S. Guo, T.M. Walsh, A.G. Aberle and M. Peters, "Analysing partial shading of PV modules by circuit modelling", 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX. 2012, pp. 002957-002960.
[29] MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor) Wikipedia
https://zh.wikipedia.org/zh-tw/%E9%87%91%E5%B1%AC%E6%B0%A7%E5%8C%96%E7%89%A9%E5%8D%8A%E5%B0%8E%E9%AB%94%E5%A0%B4%E6%95%88%E9%9B%BB%E6%99%B6%E9%AB%94
[30] Daming Chena, Yifeng Chena, Zigang Wanga, Jian Gonga, Chengfa Liua, Yang Zoua, Yu Hea, Yao Wanga, Ling Yuana, Wenjie Lina,b, Rui Xiaa, Li Yina, Xueling Zhanga, Guanchao Xua, Yang Yang, “24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design”
[31] https://zh.wikipedia.org/zh-tw/%E6%AF%94%E7%86%B1%E5%AE%B9