簡易檢索 / 詳目顯示

研究生: 廖雅韻
Liao, Ya-Yun
論文名稱: 阿拉伯芥磷酸鹽轉運蛋白AtPHT1;1關鍵氨基酸殘基的結構功能分析
Structure-Function Analysis Reveals Amino Acid Residues of Arabidopsis Phosphate Transporter AtPHT1;1 Crucial for Its Activity
指導教授: 潘榮隆
Pan, Rong-Long
邱子珍
Chiou, Tzyy-Jen
口試委員: 劉姿吟
Liu, Tzu-Yin
黃蘊慈
Huang, Yun-Tzu
林士鳴
Lin, Shih-Ming
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 53
中文關鍵詞: 磷酸鹽轉運蛋白阿拉伯芥主要促進家族氨基酸殘基結構
外文關鍵詞: AtPHT1;1, Major Facilitator Superfamily, Amino Acid Residues
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷為植物生長與發育中之必要大量元素,在植物體中,磷的獲取主要仰賴植物根中磷酸鹽轉運蛋白運輸無機磷酸鹽。為了瞭解氫離子偶聯磷酸鹽共同轉運蛋白之運輸機制,本研究應用結構-功能分析,研究阿拉伯芥磷酸鹽轉運蛋白1; 1(AtPHT1; 1)在植物根中磷的獲取機制。首先,利用已解構之印度梨型孢真菌磷酸鹽轉運蛋白(PiPT)的3D晶體結構為模板,預測阿拉伯芥磷酸鹽轉運蛋白1; 1的二級和三級結構,挑選出可能參與阿拉伯芥磷酸鹽轉運蛋白1; 1活性之28個氨基酸殘基,其次,將28個氨基酸殘基突變成丙氨酸,分別表現於高親和力磷酸鹽轉運蛋白缺陷之酵母菌pam2突變體和阿拉伯芥pht1; 1突變體,分析各氨基酸之互補能力效應。最後,整合結構和功能性互補分析,並提出阿拉伯芥磷酸鹽轉運蛋白1; 1運輸氫離子與磷酸鹽之機制,其中,D35、D38、R134和D144氨基酸參與跨膜氫離子運輸,而Y312和N421氨基酸參與初始磷酸鹽運輸,當磷酸鹽進入結合位置時,兩個芳族氨基酸Y145和F169與結合位置中Q172、W304、Y312、D308和K449氨基酸產生分子內氫鍵,維持了磷酸鹽結合位置之結構穩定,隨後磷酸鹽與正電K449氨基酸相互作用,促使磷酸鹽從結合位置釋出,此外,D38、D93、R134、D144、D212、R216、R233、D367、K373和E504氨基酸,可以形成內部靜電相互作用來穩定阿拉伯芥磷酸鹽轉運蛋白1; 1之結構整體和適應性,綜合結構和功能性互補分析,這個研究提供了一個運輸氫離子與磷酸鹽機制的模型,闡明植物磷酸鹽轉運蛋白的運輸機制。


    Phosphorus (P), an essential plant macronutrient, is acquired in the form of inorganic phosphate (Pi) by transporters located at the plasma membrane of root cells. To decipher the Pi transport mechanism, Arabidopsis thaliana Pi transporter 1;1 (AtPHT1;1), the most predominantly H+-coupled Pi co-transporter in the root, was selected for structure-function analysis. We first predicted its secondary and tertiary structures on the basis of the Piriformospora indica Pi transporter (PiPT) and identified 28 amino acid residues potentially engaged in the activity of AtPHT1;1. We then mutagenized these residues into alanine and expressed them in the yeast pam2 mutant defective in high-affinity Pi transporters and Arabidopsis pht1;1 mutant, respectively, for functional complementation validation. We further incorporated the functional characterization and structure analyses to propose a mechanistic model for the function of AtPHT1;1. We showed that D35, D38, R134 and D144, implicated in H+ transfer across the membrane, and Y312 and N421, involved in initial interaction and translocation of Pi, are all essential for its transport activity. When Pi enters the binding pocket, the two aromatic moieties of Y145 and F169 and the hydrogen bonds generated from Q172, W304, Y312, D308, and K449 can build a scaffold to stabilize the structure. Subsequent interaction between Pi and the positive residue of K449 facilitates its release. Furthermore, D38, D93, R134, D144, D212, R216, R233, D367, K373, and E504 may form internal electrostatic interactions for structure ensemble and adaptability. This study offers a comprehensive model for elucidating the transport mechanism of a plant Pi transporter.

    Table of Contents Introduction.......................................................1 Materials and Methods..............................................7 Plant materials and growth conditions..............................7 Plant materials and growth conditions..............................7 Arabidopsis transformation.........................................7 Measurement of phosphate contents..................................8 Agrobacterium-mediated infiltration of tobacco leaves..............8 Yeast manipulation, growth complementation and Pi transport assay..9 Isolation of membrane proteins from yeast..........................9 Total protein extraction from Arabidopsis.........................10 SDS-PAGE and immunoblot analysis..................................10 Bioinformatics analysis of AtPHT1;1...............................11 Results...........................................................12 Structure prediction of AtPHT1;1..................................12 Selection of potential key amino acid residues involved in the Pi transport activity of AtPHT1;1....................................13 Functional analysis of AtPHT1;1 in yeast pam2 mutant..............13 Functional analysis of AtPHT1;1 in Arabidopsis mutant.............15 TM-localized amino acid residues of AtPHT1;1 crucial for Pi transport.........................................................16 Key amino acid residues of AtPHT1;1 on the extracellular side.....17 Key amino acid residues of AtPHT1;1 on the cytoplasmic side.......18 Discussion........................................................20 Essential residues within TM domain...............................21 1. Essential residues for Pi transport.......................21 2. Essential residues for H+ transfer........................22 Essential residues at bilayer interfaces on extracellular or cytoplasmic sides.................................................23 1. Essential residues for conformational changes, internal electrostatic interactions, and structural stability..............23 2. Residues for other functionalities........................24 A mechanistic model of Pi transport of AtPHT1;1...................25 Conclusions.......................................................26 Future perspectives...............................................27 References........................................................29 Figures...........................................................34 Figure 1. 3D structure of AtPHT1;1................................35 Figure 2. Topology of AtPHT1;1....................................36 Figure 3. Characterization of AtPHT1;1 expression and function in S. cerevisiae........................................................37 Figure 4. Evaluation of TM-localized amino acid residues of AtPHT1;1 by functional analyses in yeast and Arabidopsis...................38 Figure 5. Evaluation of amino acid residues on the extracellular side of AtPHT1;1 by functional analyses in yeast and Arabidopsis.......39 Figure 6. Evaluation of amino acid residues on the cytoplasmic side of AtPHT1;1 by functional analyses in yeast and Arabidopsis..........40 Figure 7. Proposed mechanism of Pi transport of AtPHT1;1..........41 Appendix..........................................................42 Table S1. List of primer sequences................................43 Table S2. The corresponding amino acid residues in AtPHT1;1, ScPHO84, and PiPT..........................................................44 Table S3. Homologous residues of A-motif in YajR, XylE, PiPT, and AtPHT1;1..........................................................45 Table S4. The proposed functions of amino acid residues in MFS....46 Figure S1. Sequence alignment of the AtPHT1;1 homologues..........47 Figure S2. Putative hydrogen bonds in the inward facing occluded state of AtPHT1;1.......................................................48 Figure S3. Prediction of intrinsically disordered regions in AtPHT1;1..........................................................49 Figure S4. Complementation analysis of pht1;1 mutants.............50 Figure S5. Immunoblot analysis of AtPHT1;1 variants expressed in yeast pam2..............................................................51 Figure S6. Immunoblot analysis of AtPHT1;1 variants expressed in Arabidopsis pht1;1 mutants......................................52 Figure S7. Plasma membrane localization of YFP-tagged AtPHT1;1 variants expressed in tobacco leaves..............................53

    Ai, P., Sun, S., Zhao, J., Fan, X., Xin, W., Guo, Q., Yu, L., Shen, Q., Wu, P., Miller, A. J., and Xu, G. (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J., 57: 798-809
    Ayadi, A., David, P., Arrighi, J. F., Chiarenza, S., Thibaud, M. C., Nussaume, L., and Marin, E. (2015) Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling. Plant Physiol., 167: 1511-1526
    Baek, D., Chun, H. J., Yun, D. J., and Kim, M. C. (2017) Cross-talk between phosphate starvation and other environmental stress signaling pathways in plants. Mol. Cells, 40: 697-705
    Bayle, V., Arrighi, J. F., Creff, A., Nespoulous, C., Vialaret, J., Rossignol, M., Gonzalez, E., Paz-Ares, J., and Nussaume, L. (2011) Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell, 23: 1523-1535
    Bun-Ya, M., Nishimura, M., Harashima, S., and Oshima, Y. (1991) The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol. Cell Biol., 11: 3229-3238
    Chiou, T. J., Aung, K., Lin, S. I., Wu, C. C., Chiang, S. F., and Su, C. L. (2006) Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 18: 412-421.
    Chiou, T. J. and Lin, S. I. (2011) Signaling network in sensing phosphate availability in plants. Annu. Rev. Plant Biol., 62: 185-206
    Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16: 735-743
    Dyson, H. J. and Wright, P. E. (2005) Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol., 6: 197-208
    Fontenot, E. B., Ditusa, S. F., Kato, N., Olivier, D. M., Dale, R., Lin, W. Y., Chiou, T. J., Macnaughtan, M. A., and Smith, A. P. (2015) Increased phosphate transport of Arabidopsis thaliana Pht1;1 by site-directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions. Plant Cell Environ., 38: 2012-2022
    Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast, 11: 355-360
    González, E., Solano, R., Rubio, V., Leyva, A., and Paz-Ares, J. (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell, 17: 3500-3512
    Harrison, M. J. and van Buuren, M. L. (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 378: 626-629
    Huang, T. K., Han, C. L., Lin, S. I., Chen, Y. J., Tsai, Y. C., Chen, Y. R., Chen, J. W., Lin, W. Y., Chen, P. M., Liu, T. Y., Chen, Y. S., Sun, C. M., and Chiou, T. J. (2013) Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. Plant Cell, 25: 4044-4060
    Javot, H., Penmetsa, R. V., Terzaghi, N., Cook, D. R., and Harrison, M. J. (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. (USA) 104 (5): 1720-1725
    Jensen, L. T., Ajua-Alemanji, M., and Culotta, V. C. (2003) The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J. Biol. Chem., 278:42036-42040
    Jiang, D., Zhao, Y., Wang, X., Fan, J., Heng, J., Liu, X., Feng, W., Kang, X., Huang, B., Liu, J., and Zhang, X. C. (2013) Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc. Natl. Acad. Sci. USA, 110: 14664-14669
    Johri, A. K., Oelmüller, R., Dua, M., Yadav, V., Kumar, M., Tuteja N., Varma, A., Bonfante, P., Persson, B. L., and Stroud, R. M. (2015) Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Front. Microbiol., 6: 984
    Ke, M., Yuan, Y., Jiang, X., Yan, N., and Gong, H. (2017) Molecular determinants for the thermodynamic and functional divergence of uniporter GLUT1 and proton symporter XylE. PLoS Comput. Biol., 13:1-26
    Kirsch, R. D. and Joly, E. (1998) An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res., 26:1848-1850
    Kumar, S. and Nussinov, R. (2002) Close-range electrostatic interactions in proteins. Chembiochem., 3: 604-617
    Lee, C. H., Pan, Y. J., Huang, Y. T., Liu, T. H., Hsu, S. H., Lee, C. H., Chen, Y. W., Lin, S. M., Huang, L. K., and Pan, R. L. (2011) Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase. J. Biol. Chem., 286: 11970-11976
    Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., and Russell, R. B. (2003) Protein disorder prediction: implications for structural proteomics. Structure, 11:1453-1459.
    Lin, S. M., Tsai, J. Y., Hsiao, C. D., Huang, Y. T., Chiu, C. L., Liu, M. H., Tung, J. Y., Liu, T. H., Pan, R. L., and Sun, Y. J. (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature, 484: 399-403
    Lin, W. Y., Huang, T. K., and Chiou, T. J. (2013) NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell, 25: 4061-4074
    Liu, T. Y., Aung, K., Tseng, C. Y., Chan, T. Y., Chen, Y. S., and Chiou, T. J. (2011) Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis. Plant Physiol., 156: 1176-1189
    Loth-Pereda, V., Orsini, E., Courty,P. E., Lota, F., Kohler,A., Diss, L., Blaudez, D., Chalot, M., Nehls,U., Bucher,M., and Martin, F. (2011) Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol. 156 (4): 2141–2154
    Martinez, P. and Persson, B. L. (1998) Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol. Gen. Genet., 258: 628-638
    Mitsukawa, N., Okumura, S., Shirano, Y., Sato, S., Kato, T., Harashima, S., and Shibata, D. (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc. Natl. Acad. Sci. USA, 94: 7098-7102
    Muchhal, U. S., Pardo, J. M., and Raghothama, K. G. (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 93: 10519-10523
    Mudge, S. R., Rae, A. L., Diatloff, E., and Smith, F. W. (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J., 31: 341-353
    Nussaume, L., Kanno, S., Javot, H., Marin, E., Pochon, N., Ayadi, A., Nakanishi, T. M., and Thibaud, M. C. (2011) Phosphate import in plants: focus on the PHT1 transporters. Front. Plant Sci., 2: 83
    Oldfield, C. J. and Dunker, A. K. (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem., 83:553-584Pao, S. S., Paulsen, I. T., and Saier, M. H. Jr. (1998) Major facilitator superfamily. Microbiol. Mol. Biol. Rev., 62: 1-34
    Pao, S. S., Paulsen, I. T., and Saier, M. H. Jr. (1998) Major facilitator superfamily. Microbiol. Mol. Biol. Rev., 62: 1-34
    Pedersen, B. P., Kumar, H., Waight, A. B., Risenmay, A. J., Roe-Zurz, Z., Chau, B. H., Schlessinger, A., Bonomi, M., Harries, W., Sali, A., Johri, A. K., and Stroud, R. M. (2013) Crystal structure of a eukaryotic phosphate transporter. Nature, 496: 533-536
    Poirier, Y. and Bucher, M. (2002) Phosphate transport and homeostasis in Arabidopsis. Arabidopsis Book 1, e0024.
    Quistgaard, E. M., Löw, C., Guettou, F., and Nordlund, P. (2016) Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat. Rev. Mol. Cell Biol., 17: 123-132
    Samyn, D. R., Ruiz-Pávon, L., Andersson, M. R., Popova, Y., Thevelein, J. M., and Persson, B. L. (2012) Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate: H+ transceptor and its effect on signalling to the PKA and PHO pathways. Biochem. J., 445: 413-422
    Samyn, D.R., Van der Veken, J., Van Zeebroeck, G., Persson, B. L., and Karlsson, B. C. (2016) Key Residues and Phosphate Release Routes in the Saccharomyces cerevisiae Pho84 Transceptor. J. Biol. Chem., 291: 26388-26398
    Schachtman, D. P., Reid, R. J., and Ayling, S. M. (1998) Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiol., 116(2):447-453
    Schünmann, P. H. D., Richardson, A. E., Smith, F. W., and Delhaize, E. (2004) Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J. Exp. Bot. 55 (398): 855-865
    Shin, H., Shin, H. S., Dewbre, G. R., and Harrison, M. J. (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J., 39: 629-642
    Sun, L., Zeng, X., Yan, C., Sun, X., Gong, X., Rao, Y., and Yan, N. (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature, 490: 361-366
    Tusnády, G. E., Dobson, L., and Tompa, P. (2015) Disordered regions in transmembrane proteins. Biochim. Biophys. Acta, 1848: 2839-2848Quistgaard, E. M., Löw, C., Guettou, F., and Nordlund, P. (2016) Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat. Rev. Mol. Cell Biol., 17: 123-132
    Wild R., Gerasimaite, R., Jung, J. Y., Truffault, V., Pavlovic, I., Schmidt, A., Saiardi, A., Jessen, H. J., Poirier, Y., Hothorn, M., and Mayer, A. (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science, 352(6288):986-990
    Wisedchaisri, G., Park, M. S., Iadanza, M. G., Zheng, H., and Gonen, T. (2014) Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE. Nat. Commun., 5: 4521
    Yan, N. (2015) Structural biology of the major facilitator superfamily transporters. Annu. Rev. Biophys., 44: 257-283
    Zhao, B. and Xue, B. (2018) Decision-Tree Based Meta-Strategy Improved Accuracy of Disorder Prediction and Identified Novel Disordered Residues Inside Binding Motifs. Int. J. Mol. Sci., 19: 3052
    Zhang X. C., Zhao, Y., Heng, J., Jiang, D. (2015) Energy coupling mechanisms of MFS transporters. Protein Sci. 24(10):1560-1579
    Zheng, H., Wisedchaisri, G., and Gonen, T. (2013) Crystal structure of a nitrate/nitrite exchanger. Nature, 497:647-651

    QR CODE