簡易檢索 / 詳目顯示

研究生: 朱鎵承
Chu, Chia-Cheng
論文名稱: 高分子鏈從空腔中釋放的動力學研究
Dynamics of Polymer Releasing from a Cavity
指導教授: 蕭百沂
Hsiao, Pai-Yi
口試委員: 曹恆光
Tsao, Heng-Kwong
胡尚秀
Hu, Shang-Hsiu
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 45
中文關鍵詞: 空腔高分子鏈動力學研究
外文關鍵詞: Cavity, polymer, chain
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們以理論分析及分子動力學模擬的方式研究了高分子鏈從空腔中釋
    放出來的過程。我們發現整個過程可以分成兩個階段,第一階段是球形膨
    脹階段,此時整個分子鏈的形狀像是一顆球,而整個系統的自由能則遵
    循F ∼ (b/R)^(3/3ν−1)×N^(3ν/3ν−1)。藉由平衡自由能變化率和能量耗散率,我們推得鏈的尺寸隨時間的變化公式為R(t) = R0×(1+ t/τs)^(3ν−1/6ν+1),其中τs是球形膨脹階段的特徵時
    間,其形式遵守τs ∼ R0^(6ν+1/3ν−1)N^(−1/3ν−1)。在模擬中,我們發現實際的τs大約正比於N。
    當分子鏈尺寸R變成正比於Nν時,球形膨脹階段結束,第二階段開始。第二階
    段叫做線圈鬆弛階段。此時整個分子鏈的形狀像是一團線圈。如果高分子鏈是
    在易溶溶液中,其系統自由能會變為F ∼ −logR+ R^2Nb^2+vN2/R^3。藉由平衡能量變
    化率,我們可得出分子鏈尺寸隨時間變化的情形:R(t) ≃ (Rrx^5 − C1 exp(−(t−tb)/τc) )^(1/5),其中Rrx是分子鏈在鬆弛情況下的尺寸,τc是這個階段的特徵時間。根據模擬結
    果,我們得知第二階段佔整個釋放過程的大部分時間,因此高分子鏈的鬆弛時
    間應該會正比於τc。τc理論預測會正比於N^2,然而模擬的結果告訴我們τc大略正
    比於N^2.4,因此整個高分子鏈的鬆弛時間也大約正比於N2.4。


    We investigate single chain releasing from a cavity via theoretical analysis and
    molecular dynamics simulation. We discover that the releasing process can be
    divided into two stages. In the first stage, the compressed chain expands like a
    sphere. The free energy of the system is calculated. By balancing the rate of
    free energy change with the rate of energy dissipation, we derive the variation
    of chain size to be R(t) = R0×(1+ t/τs)^(3ν−1/6ν+1)where τs is the characteristic time.
    Our simulations show that τs is about proportional to N. The sphere expansion
    stage ends at the moment when R turns to scale like N^ν and the second stage
    starts, called coil relaxation stage. In the stage, the chain relaxed like a coil.
    The free energy of the system becomes F ∼ −logR+ R^2Nb^2+vN2/R^3. The balance
    equation is solved, and the chain size respects R(t) ≃ (Rrx^5 − C1 exp(−(t−tb)/τc) )^(1/5) . τc
    is the characteristic time for the coil relaxation stage and behaves like N^2.4. We
    find that a releasing process spends most of the time on the coil relaxation stage.
    Therefore, the total relaxation time is determined by τc.

    Abstract (Chinese) I Abstract II Acknowledgements (Chinese) III Contents IV List of Figures VI List of Tables X 1 Introduction 1 1.1 Structure of virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Paper Review and Motivation . . . . . . . . . . . . . . . . . . . . . 8 2 Theory 11 2.1 Sphere Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Zimm Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 Rouse Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Coil Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Method and Simulation 19 3.1 LAMMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Interaction Between Monomers . . . . . . . . . . . . . . . . . . . . 20 3.3 Capsid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Lagevin Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Chain Length and Volume Fraction . . . . . . . . . . . . . . . . . . 21 3.6 Simulation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.6.1 Loading Phase . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.6.2 Equibration Phase . . . . . . . . . . . . . . . . . . . . . . . 23 3.6.3 Releasing Phase . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Results and Discussion 25 4.1 Chain Size v.s. Time . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 R ≃ Nγ(et) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 Domination of Coil Relaxation . . . . . . . . . . . . . . . . . . . . . 31 4.4 Sphere Expansion Stage . . . . . . . . . . . . . . . . . . . . . . . . 32 4.5 Coil Relaxation Stage . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 Conclusion 41 Bibliography 43

    [1] Microbiology OpenStax College. Viral infections of the respiratory
    tract. https://philschatz.com/microbiology-book/contents/m58914.
    html#, 2016.
    [2] Jennifer Louten. Virus structure and classification. In Essential Human Virology,
    pages 19–29. Elsevier, 2016.
    [3] Mahmoud Sitohy, Michela Scanu, Bernard Besse, Claudine Mollat, Sylviane
    Billaudel, Thomas Haertl´e, and Jean-Marc Chobert. Influenza virus a subtype
    h1n1 is inhibited by methylated beta-lactoglobulin. Journal of Dairy
    Research, 77(4):411–418, September 2010.
    [4] Ulrike E. Maurer, Beate Sodeik, and Kay Gr¨unewald. Native 3D intermediates
    of membrane fusion in herpes simplex virus 1 entry. Proceedings of the
    National Academy of Sciences, 105(30):10559–10564, July 2008.
    [5] Elena G. S´anchez, Daniel P´erez-N´u˜nez, and Yolanda Revilla. Mechanisms of
    entry and endosomal pathway of african swine fever virus. Vaccines, 5(4):42,
    November 2017.
    [6] Ameneh Maghsoodi, Anupam Chatterjee, Ioan Andricioaei, and Noel C.
    Perkins. How the phage T4 injection machinery works including energetics,
    forces, and dynamic pathway. Proceedings of the National Academy of
    Sciences, 116(50):25097–25105, November 2019.
    [7] Elena G. S´anchez Ana J. P´erez-Bern´a, Alvaro Ortega-Esteban, Rosa
    Men´endez-Conejero, Dennis C. Winkler, Margarita Men´endez, Alasdair C.
    Steven, S.Jane Flint, Pedro J. de Pablo, and Carmen San Mart´ın. The role of
    capsid maturation on adenovirus priming for sequential uncoating. Journal
    of Biological Chemistry, 287(37):31582–31595, September 2012.
    [8] Angelo Cacciuto and Erik Luijten. Confinement-driven translocation of a
    flexible polymer. Physical Review Letters, 96(23):238104–1–238104–4, June
    2006.
    [9] R. P. Linna, P. M. Suhonen, and J. Piili. Rigidity-induced scale invariance in
    polymer ejection from capsid. Physical Review E, 96(5):052402–1–052402–10,
    November 2017.
    [10] I. Ali, D. Marenduzzo, and J. M. Yeomans. Polymer packaging and ejection
    in viral capsids: Shape matters. Physical Review Letters, 96(20):208102–1 –
    208102–4, May 2006.
    [11] Pai-Yi Hsiao. Scaling theory of a polymer ejecting from a cavity into a semispace.
    Polymers, 12(12):3014, December 2020.
    [12] David Buchta, Tibor F¨uzik, Dominik Hreb´ık, Yevgen Levdansky, Luk´aˇs
    Suken´ık, Liya Mukhamedova, Jana Moravcov´a, Robert V´acha, and Pavel
    Plevka. Enterovirus particles expel capsid pentamers to enable genome release.
    Nature Communications, 10(1):31582–31595, March 2019.
    [13] Takahiro Sakaue and Elie Rapha¨el. Polymer chains in confined spaces and
    flow-injection problems: some remarks. Macromolecules, 39(7):2621–2628,
    March 2006.
    44
    [14] Takahiro Sakaue and Natsuhiko Yoshinaga. Dynamics of polymer decompression:
    Expansion, unfolding, and ejection. Physical Review Letters,
    102(14):148302, April 2009.
    [15] Ralph H. Colby and M. Rubinstein. Polymer physics. Oxford University
    Press, Oxford, 2003.
    [16] Jos´e A. Campillo-Balderas, Antonio Lazcano, and Arturo Becerra. Viral
    genome size distribution does not correlate with the antiquity of the host
    lineages. Frontiers in Ecology and Evolution, 3(143):1–8, December 2015.
    [17] Prashant K. Purohit, Mandar M. Inamdar, Paul D. Grayson, Todd M. Squires,
    Jan´e Kondev, and Rob Phillips. Forces during bacteriophage DNA packaging
    and ejection. Biophysical Journal, 88(2):851–866, February 2005.

    QR CODE