研究生: |
許慈恩 |
---|---|
論文名稱: |
長壽突變果蠅株EP1101的特性研究 Characterization of a longevity mutant EP1101 in Drosophila |
指導教授: | 汪宏達 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 果蠅 、氧化壓力 、長壽 、類解脂脢 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在壓力的篩選之下,我們發現數個由P-element所插入到genome的長壽果蠅,有抗壓的能力。其中一個有抗性的突變株是EPEP1101。由壽命長短的測試,EPEP1101在25℃的環境之下,比對照組的果蠅w1118的平均壽命增加34%。使用反轉錄聚合脢連鎖反應法(RT-PCR)在EPEP1101搜尋由EP-element的插入位置附近的目標基因,發現一個轉錄物(transcript)在年輕及老年的果蠅相較於對照組的果蠅有較高的表現。此目標基因是CG33174基因,會同時轉錄出Long form與short form的基因產物。過量表現CG33174於不同的特定組織當中,都發現壽命延長且對氧化的壓力(oxidative stress)有抗性,而且不論用genomic DNA 或cDNA都有相似的作用。根據flybase中對CG33174的序列分析,它具有類解脂脢的功能區(Lipase like domain),進一步分析CG33174有何功能(function),由三酸甘油脂的測試及測量中性脂肪(Natural lipids)在果蠅冷凍切片的檢體,發現突變株EPEP1101體內脂肪的分布比對照組的果蠅相對的減少。此外,在小鼠中同樣也發現了CG33174的相對基因,想瞭解在不同物種的CG33174相對基因對於壽命長短是否扮演相同的功能,我們表現了CG33174在果蠅全身可增加壽命。另外測試果蠅的心臟能力,用電擊處理果蠅,之後觀察果蠅心臟恢復的情形,發現突變株EP1101心臟恢復的能力比對照組好。本研究對於CG33174基因的增加於果蠅的壽命影響做了一個全面性的探討。
Several EP insertion lines have stress resistance was isolated in the stress screening. One of the resistant mutant, EP EP1101 was tested for lifespan, show 34% increase in the mean lifespan than control w1118. To search for the target gene nearby the EP-element insertion site in EP1101, one transcript with higher expression was detected in EP1101 flies compared to those from w1118. The target gene is CG33174 gene, which transcribes two form, long form and short form gene product. We use the different GAL4 line driver to over-express the CG33174 gene of genomic DNA or cDNA in the different tissue of fly. We found that fly have lifespan extension and have resistance to the oxidative stress. In the flybase report, the DNA sequence of CG33174 has a lipase-like domain. CG33174 gene is a novel gene, we want to analyze the gene’s function. A triacylglycerol kit was used to measure the triacylglycerol level in the fly body. The Nile red, a fluorescent dye which combines to the neutral lipid, was used in the fly section. We found that mutant fly EP1101 had decreased level in the lipid contents compared with the control w1118. On the other hand, we wondered whether the CG33174 orthologous gene in different species have the same role in the determination of lifespan extension. I made the construction of Drosophila CG33174 orthologous gene in the mouse to generate the transgenic fly. It shows that the mouse orthologous gene also extends lifespan when expressed in Drosophila. Besides, to test the fly heart performance, we found that the mutant EP1101 have the better ability to restore to normal condition than control fly.
參考文獻
F. Brad Johnson,David A. Sinclair, and Leonard Guarente.(1999) Molecular biology of aging. Cell 96:291-302
Fink, Trine., Abildtrup, Lisbeth., Fogd, Kirsten., Abdallah, Basem M., Kassem, Moustapha., Ebbesen, Peter.,and Zachar, Vladimir. (2004). Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia. Stem Cells 22;1346-1355
Friedman, D.B., and Johnson, T.E. (1988). A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces her- maphrodite fertility. Genetics 118, 75–86.
Jackson, G.R., Salecker, Iris., Dong, Xinzhong., Yao, Xiang., Arnheim, Norman.,
Faber, P.W., MacDonald, M.E., and Zipursky, S.L. (1998). Polyglutamine-Expanded Human Huntingtin Transgenes Induce Degeneration of Drosophila Photoreceptor Neurons. Neuron 21: 633-642.
Joep M. S. Burger, Dae Sung Hwangbo, Vanessa Corby-Harris and Daniel E. L. Promislow. (2007). The functional costs and benefits of dietary restriction in Drosophila. Aging Cell 6, pp63–71.
Jonassen, T., Proft, M., Randez-Gil, F., Schultz, J.R., Marbois, B.N.,Entian,K.D.,and Clarke,C.F.(1998)Yeast Clk-1 homologue is a mitochondrial protein in coenzyme Q (Coq7/ Cat5)synthesis. J. Biol. Chem. 6, 3351–3357.
Kazemi-Esfarjani, Parsa and Benzer, Seymour. (2002).Suppression of polyglutamine toxicity by a Drosophila homolog of myeloid leukemia factor 1. Human Molecular Genetics, Vol. 11, No. 21 2657–2672
Kazemi-Esfarjani, Parsa and Benzer, Seymour. (2000). Genetic suppression of polyglutamine toxicity in Drosophila. Science 287,1837-1840
Kenyon C: (2001). A conserved regulatory system for aging. Cell 2:165-168.
Kim, Tae-Wan., and Tanzi, R.E. (1998). Neuronal Intranuclear Inclusions in Polyglutamine Diseases: Nuclear Weapons or Nuclear Fallout? Neuron 21: 657-659.
Klass, M.R. (1983). A method for the isolation of longevity mutants in the
nematode Caenorhabditis elegans and initial results.Mech. Ageing Dev. 22, 279-286
Larsen, P.L. (1993). Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 90, 8905–8909.
Larsen, P.L.,Albert,P.S., and Riddle,D.L.(1995).Genes that regulate both development and longevity in Caenorhabditis elegans.Genetics 139,1567-1583
Lin, Y.J.,Seroude,L., and Benzer, S.(1998).Extended life-span and stress resistance in the Drosophila mutant Methuselah. Science 282,943-946.
Luong N, Davies CR, Wessells RJ, Graham SM, King MT, Veech R, et al. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 2006;4:133–42.
Mair W, Piper MD, Partridge L. (2005). Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 2005 Jul;3(7):e223.
Oh, S.W., Mukhopadhyay, Arnab., Dixit, B.L., Raha, Tamal., Green, M.R., and Tissenbaum, H.A. (2005). Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet 38, 251 – 257.
Orr,W.C., and Sohal,R.S. (1994). Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263,1128-1130.
Orr,W.C., Takeshi, Akasaka., and Bodmer, Rolf. (2007). Age-related cardiac disease model of Drosophila. Mech Ageing Dev. 128(1): 112–116.
Parkes, T.L., Elia, A.J., Dickinson, D., Hilliker, A.J., Phillips, J.P., and Boulianne, G.L. (1998). Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet. 19, 171–174.
Piper, M.D., Skorupa, D., Partridge, L. (2005). Diet, metabolism and lifespan in Drosophila. Exp. Gerontol. 40(11):857-62.
Pistillo, D. : Manzi, A. : Tino, A. : Boyl, P.P. : Graziani, F. : Malva, C. (1998). The Drosophila melanogaster lipase homologs: a gene family with tissue and developmental specific expression. J. Mol. Biol. 276, 877-885.
Stephen L. Helfand and Blanka Rogina. .Genetic of aging in the fruit fly, drosophila melanogaster. Annu. Rev. Genet.(2003). 37:329-48.
Tatar M, Bartke A & Antebi A: (2003).The endocrine regulation of aging by insulin like signals. Science 299:1346-1351.
Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L et al. (1995). Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378, 403 – 406.
Wang, H.D., Kazemi-Esfarjani, Parsa., and Benzer, Seymour. (2004). Multiple-stress analysis for isolation of Drosophila longevity genes. PNAS. 101, 12610-12615.
Walker, D.W., Muffat, Julien., Rundel, Colin., and Benzer, Seymour. (2006). Overexpression of a Drosophila homolog of apolipoprotien D leads to increased stress resistance and extended lifespan. Current Biology 16, 674-679.
Warrick, J.M., Paulson, H.L., Gray-Board, G.L., Bui, Q.T., Fischbeck, K.H., Pittman, R.N., and Bonini, N.M. (1998). Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93: 939-949.
Warrick, J.M., Chan, H.Y. Edwin., Gray-Board, G.L., Chai, Yaohui., Paulson H.L., and Bonini, N.M. (1999). Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23, 425 – 428.
Wessells RJ, Fitzgerald E, Cypser JR, Tatar M, Bodmer R. (2004). Insulin regulation of heart function in aging flies. Nat Genet 36:1275–81.
Wessells, R.J., and Bodmer, Rolf. (2007). Cardiac aging. Seminars in Cell & Developmental Biology 18, 111–116.