簡易檢索 / 詳目顯示

研究生: 王秀智
Wang Hsiu Chih
論文名稱: 醣胺素與日本腦炎病毒的交互作用:套膜蛋白醣胺素鍵結區的確立
Glycosaminoglycans-Japanese encephalitis virus interaction:Characterization of GAGs-binding Domain of Envelope Protein in JEV
指導教授: 吳文桂
Wen-guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 120
中文關鍵詞: 日本腦炎表面電漿共振醣胺素病毒套膜蛋白
外文關鍵詞: JEV, Surface plasmon resonance, GAGs, Virus, Envelope protein
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據過去文獻報導,細胞表面的醣胺素(GAGs)對於導引日本腦炎病毒(JEV)之感染上扮演重要的角色,但是其過程所牽扯的範圍上及鍵結結構功能的部分相對地仍未清楚。因此我們建立一套特異性分子附著力的系統介於日本腦炎病毒套膜蛋白和已定義其結構性之醣胺素,藉以研究醣胺素在日本腦炎病毒感染中扮演的角色。
    日本腦炎目前為法定傳染病之一,依過去的研究顯示,其套膜蛋白為進入細胞的關鍵。我們利用分子生物技術分別製作了重組日本腦炎套膜蛋白第三區,包括:以含有可溶性融合蛋白Thioredoxin的pEt32a載體為基礎的pEt32a、E261-420、E277-420、 E292-420、E292-402及以未含Thioredoxin的pRsetA載體為基礎的E261-420等蛋白胜肽片段,再利用表面電漿共振技術(SPR)偵測其分子間動力學的參數。實驗結果顯示,在含有E261-291的胜肽有較強的結合能力,其為前端預測醣胺素鍵結區,而後端E403-420則較弱。雖然單純pEt32a也對肝素有相當的結合能力,但對照於以pRsetA載體為基礎的蛋白胜肽片段,可清楚地證明JEV E對於肝素有較強結合的能力。
    本研究探討醣胺素和日本腦炎病毒套膜蛋白第三區之結合專一性,並由三維結構觀點瞭解病毒進入細胞之過程,並證明這對於病毒感染提供一有效可行過程的觀察方向,可作為未來發展新的抗病毒藥物之基礎。


    In our recent studies, cell surface glycosaminoglycans (GAGs) play an important role in inducing Japanese encephalitis virus (JEV) infection, the extent to which GAGs are initially involved in JEV infection and the function of binding structure are relatively unknown.Understanding the role that GAGs play in JEV infection requires establishing a specific recognition between the JEV envelope protein and structurally defined GAGs.
    In our recent studies, JEV is still one of the statutory contagions, which envelope protein is the entrance key of cell membrane, especially the domain III is the most interested. Using molecular biotech, we created a kind of reconstructed JEV E domain III protein based on vector pEt32a with thioredoxin which contains pEt32a、E261-420、E277-420、E292-420、E292-402 and vector pRsetA without thioredoxin which contains E261-420. We detect the kinetic constants between molecules immediately by using SPR which is biomolecular binding technology. The present studies show about the recombinant GAG-binding proteins of JEV, the binding ability is stronger in anterior predictive GAGs binding peptide E261-291 than inferior E403-420. Otherwise, pure pEt32a (thioredoxin control) also got binding ability with heparin, but we took a protein section of vector pRsetA(without thioredoxin), obtained a clear binding demonstration between JEV E261-420 and heparin.
    This projection is discussing between GAGs and JEV envelope protein domain III in the binding specificity, and virus entry process in 3D structure view, and proving an effective and available research direction of virus infection. Thus it is meaningful contribution in further researching of new antivirus medicine and biology.

    壹、 緒論 11 一、 日本腦炎 11 I. 日本腦炎沿革 11 II. 日本腦炎感染途徑、症狀 12 III. 日本腦炎病毒生活史 13 IV. 日本腦炎病毒基因結構簡介 14 V. 日本腦炎病毒套膜蛋白 15 VI. 日本腦炎病毒CH2195LA分離株 18 二、 醣胺素 19 I. 醣胺素簡介 19 II. 肝素鍵結區域的結構特色 21 III. 肝素鍵結區域的研究 23 三、 醣胺素與病毒蛋白的交互作用 24 四、 表面電漿共振 27 I. 表面電漿共振簡介 27 II. 表面電漿共振原理 27 A. 表面等離子共振原理 28 B. 生物分子相互作用原理 28 III. 表面電漿共振應用 31 貳、 實驗方法 41 一、 蛋白質的取得 41 I. 重組蛋白之建構 41 II. 重組蛋白置備、純化及分析 41 A. 重組蛋白置備 41 B. 重組蛋白純化 42 III. 透析 43 A. 透析袋準備 43 B. 透析程序 44 IV. 檢測及定量 44 A. SDS-PAGE 電泳 44 B. 蛋白質濃度測定 45 二、 以表面電漿共振儀研究分子間交互作用 47 參、 實驗結果 51 一、 重組日本腦炎套膜蛋白置備、純化 51 二、 不含融合蛋白載體基礎之新蛋白建立 53 I. pRset 載體之建立 53 II. JEV E蛋白片段之放大 53 III. 黏合程序及pRsetA重組蛋白之純化 54 三、 以表面電漿共振為基礎之研究 54 I. JEV E261-420重組蛋白及融合蛋白Trx對於肝素鍵結力的影響 54 II. E261-291、E403-420和E292-402、Trx之比較 55 III. E261-276、E277-291、E292-420、Trx之胜肽片段比較 55 肆、 實驗討論 72 一、 序言 72 二、 蛋白的純化 73 三、 SPR的實驗 75 四、 電腦分析 77 五、 點突變分析 78 六、 結論及前景 79 伍、 參考文獻 81 陸、 附錄 90 一、 醣胺素的取得 90 I. 以肝素水解酵素裂解肝素 90 II. 以分子篩層析管柱純化不同醣鏈長片段 91 III. 醣胺素產量 92 二、 電腦模擬分析 93 三、 實驗方法附錄 103 四、 不含融合蛋白之胜肽及突變株片段的建立 111 五、 JEV品系分析 114 六、 SPR儀器規格 119

    1. Chiou CT, Hu CC, Chen PH, Liao CL, Lin YL, Wang JJ.Association of Japanese encephalitis virus NS3 protein with microtubules and tumour susceptibility gene 101 (TSG101) protein. J Gen Virol. 2003 Oct;84(Pt 10):2795-805.
    2. http://210.69.101.139/usesafe/p03.asp?id={B1A979D2-D9DC-89FB-75EA-D1AC65CDCEBB} 行政院環境保護署環境用藥安全使用網站 何美兆提供
    3. BUESCHER EL, SCHERER WF, McCLURE HE, MOYER JT, ROSENBERG MZ, YOSHII M, OKADA Y. Ecologic studies of Japanese encephalitis virus in Japan. IV. Avian infection. Am J Trop Med Hyg. 1959 Nov;8:678-88.
    4. Barrett AD, Monath TP, Cropp CB, Adkins JA, Ledger TN, Gould EA, Schlesinger JJ, Kinney RM, Trent DW. Attenuation of wild-type yellow fever virus by passage in HeLa cells. J Gen Virol. 1990 Oct;71 ( Pt 10):2301-6.
    5. Monath, TP & FX Heinz. Flavivirus 1996. Chapter 31
    6. [No authors listed] Inactivated Japanese encephalitis virus vaccine. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 1993 Jan 8;42(RR-1):1-15.
    7. Girgsdies OE, Rosenkranz G. Tick-borne encephalitis: development of a paediatric vaccine. A controlled, randomized, double-blind and multicentre study. Vaccine. 1996 Oct;14(15):1421-8.
    8. Solomon T.Recent advances in Japanese encephalitis.J Neurovirol. 2003 Apr;9(2):274-83. Review.
    9. http://www.travelhealth.gov.hk/tc_chi/travel_related_diseases/jap_encephalitis.html 香港旅遊健康服務網
    10. Okuno T, Tseng PT, Liu SY, Hsu SY, Huang CT.Rates of infection with Japanese encephalitis virus of two culicine species of mosquito in Taiwan. Bull World Health Organ. 1971;44(5):599-604. No abstract available.
    11. Hurlbut (HS) the pig-mosquito cycle. of Japanese encephalitis virus in Taiwan. J Med Entomol. 1964 Oct;39:301-7.
    12. CASALS J. Viruses: the versatile parasites; the arthropod-borne group of animal viruses. Trans N Y Acad Sci. 1957 Jan;19(3):219-35.
    13. Gubler, Duane J. and Roehrig, John T. Arboviruses (Togaviridae and Flaviviridae).
    14. Westaway EG, Brinton MA, Gaidamovich SYa, Horzinek MC, Igarashi A, Kaariainen L, Lvov DK, Porterfield JS, Russell PK, Trent DW. Flaviviridae. Intervirology. 1985;24(4):183-92. Review.
    15. Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649-88. Review
    16. Lidenbach, B. D., and C. M. Rice. 2001. Flaviviridae: the viruses and their replication, p. 991-1041. In D. M. Knipe and P. M. Howley (ed.), Fields virology, 4th ed., vol. 1. Lippincott, Williams and Wilkins, Philadelphia, Pa
    17. Heinz FX, Allison SL. Structures and mechanisms in flavivirus fusion. Adv Virus Res. 2000;55:231-69. Review
    18. Hashimoto H, Nomoto A, Watanabe K, Mori T, Takezawa T, Aizawa C, Takegami T, Hiramatsu K. Molecular cloning and complete nucleotide sequence of the genome of Japanese encephalitis virus Beijing-1 strain. Virus Genes. 1988 Jun;1(3):305-17.
    19. Westaway EG. Strategy of the flavivirus genome: evidence for multiple internal initiation of translation of proteins specified by Kunjin virus in mammalian cells. Virology. 1977 Jul 15;80(2):320-35.
    20. 潘建雄 發展日本腦炎DNA疫苗及其保護機轉之研究 國防醫學院/生命科學研究所/89/博士/89NDMC0105031
    21. Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH. Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science. 1985 Aug 23;229(4715):726-33
    22. Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 2002 Mar 8;108(5):717-25.
    23. Hase T, Summers PL, Eckels KH, Baze WB. Maturation process of Japanese encephalitis virus in cultured mosquito cells in vitro and mouse brain cells in vivo. Arch Virol. 1987;96(3-4):135-51.
    24. Hase T, Summers PL, Eckels KH, Baze WB. An electron and immunoelectron microscopic study of dengue-2 virus infection of cultured mosquito cells: maturation events. Arch Virol. 1987;92(3-4):273-91.
    25. Lindenbach BD, Rice CM. trans-Complementation of yellow fever virus NS1 reveals a role in early RNA replication. J Virol. 1997 Dec;71(12):9608-17.
    26. Rice CM Flaviviridae: the viruses and their Replication.Fields Virology (1996) p.931-959
    27. Chambers TJ, Grakoui A, Rice CM.Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. J Virol. 1991 Nov;65(11):6042-50.
    28. Chambers TJ, Nestorowicz A, Rice CM.Mutagenesis of the yellow fever virus NS2B/3 cleavage site: determinants of cleavage site specificity and effects on polyprotein processing and viral replication. J Virol. 1995 Mar;69(3):1600-5.
    29. Falgout B, Miller RH, Lai CJ.Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity. J Virol. 1993 Apr;67(4):2034-42.
    30. Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM.Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 1989 Jun 26;17(12):4713-30.
    31. Rice, CM, Strauss, EG, Strauss, J. H. 1986. Structure of the flavivirus. genome. pp. 279-326
    32. Koonin EV.Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J Gen Virol. 1993 Apr;74 ( Pt 4):733-40.
    33. Jan LR, Yang CS, Trent DW, Falgout B, Lai CJ.Processing of Japanese encephalitis virus non-structural proteins: NS2B-NS3 complex and heterologous proteases. J Gen Virol. 1995 Mar;76 ( Pt 3):573-80.
    34. Lin YL, Chen LK, Liao CL, Yeh CT, Ma SH, Chen JL, Huang YL, Chen SS, Chiang HY.DNA immunization with Japanese encephalitis virus nonstructural protein NS1 elicits protective immunity in mice. J Virol. 1998 Jan;72(1):191-200.
    35. Munoz-Jordan JL, Laurent-Rolle M, Ashour J, Martinez-Sobrido L, Ashok M, Lipkin WI, Garcia-Sastre A.Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol. 2005 Jul;79(13):8004-13.
    36. Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH.Structure of dengue virus: implications for flavivirus organization, maturation, and fusion.Cell. 2002 Mar 8;108(5):717-25.
    37. Guirakhoo F, Heinz FX, Mandl CW, Holzmann H, Kunz C. Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol. 1991 Jun;72 ( Pt 6):1323-9.
    38. Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med. 1997 Aug;3(8):866-71.
    39. Kimura T, Kimura-Kuroda J, Nagashima K, Yasui K. Analysis of virus-cell binding characteristics on the determination of Japanese encephalitis virus susceptibility. Arch Virol. 1994;139(3-4):239-51.
    40. Lee E, Lobigs M. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol. 2000 Oct;74(19):8867-75.
    41. Rostand, K. S., and J. D. Esko. Microbial adherence to and invasion through proteoglycans. Infect. Immun. 1997. 65:1–8.
    42. Hung, S. L., P. L. Lee, H. W. Chen, L. K. Chen, C. L. Kao, and C. C. King. Analysis of the steps involved in Dengue virus entry into host cells.Virology 1999.257:156–167.
    43. Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med. 1997 Aug;3(8):866-71.
    44. Su CM, Liao CL, Lee YL, Lin YL.Highly sulfated forms of heparin sulfate are involved in japanese encephalitis virus infection. Virology. 2001 Jul 20;286(1):206-15.
    45. Munoz EM, Linhardt RJ.Heparin-binding domains in vascular biology. Arterioscler Thromb Vasc Biol. 2004 Sep;24(9):1549-57. Epub 2004 Jul 1. Review.Capila I, Linhardt RJ.Heparin-protein interactions. Angew Chem Int Ed Engl. 2002 Feb 1;41(3):391-412. Review
    46. Guirakhoo F, Heinz FX, Mandl CW, Holzmann H, Kunz C. Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol. 1991 Jun;72 ( Pt 6):1323-9.
    47. Liu J, Thorp SC. Cell surface heparan sulfate and its roles in assisting viral infections.Med Res Rev. 2002 Jan;22(1):1-25. Review.
    48. Venugopal K, Gould EA. Towards a new generation of flavivirus vaccines. Vaccine. 1994 Aug;12(11):966-75. Review.
    49. Kimura-Kuroda J, Yasui K. Protection of mice against Japanese encephalitis virus by passive administration with monoclonal antibodies. J Immunol. 1988 Nov 15;141(10):3606-10.
    50. Zhang MJ, Wang MJ, Jiang SZ, Ma WY. Passive protection of mice, goats, and monkeys against Japanese encephalitis with monoclonal antibodies. J Med Virol. 1989 Oct;29(2):133-8.
    51. Nowak T, Wengler G. Analysis of disulfides present in the membrane proteins of the West Nile flavivirus. Virology. 1987 Jan;156(1):127-37.
    52. Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649-88. Review.
    53. Heinz FX. Epitope mapping of flavivirus glycoproteins. Adv Virus Res. 1986;31:103-68. Review
    54. Cecilia D, Gadkari DA, Kedarnath N, Ghosh SN. Epitope mapping of Japanese encephalitis virus envelope protein using monoclonal antibodies against an Indian strain. J Gen Virol. 1988 Nov;69 ( Pt 11):2741-7.
    55. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 1995 May 25;375(6529):291-8.
    56. protein database 1svb.pdb TBE
    57. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 1995 May 25;375(6529):291-8.
    58. Heinz FX, Auer G, Stiasny K, Holzmann H, Mandl C, Guirakhoo F, Kunz C.The interactions of the flavivirus envelope proteins: implications for virus entry and release. Arch Virol Suppl. 1994;9:339-48.
    59. Stiasny K, Allison SL, Marchler-Bauer A, Kunz C, Heinz FX. Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J Virol. 1996 Nov;70(11):8142-7.
    60. Modis Y, Ogata S, Clements D, Harrison SC. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6986-91. Epub 2003 May 20.
    61. Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH.Structure of dengue virus: implications for flavivirus organization, maturation, and fusion.Cell. 2002 Mar 8;108(5):717-25.
    62. Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature. 2004 Jan 22;427(6972):313-9
    63. Cardin AD, Weintraub HJ. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989 Jan-Feb;9(1):21-32.
    64. Jackson RL, Busch SJ, Cardin AD. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes.
    65. Pierschbacher MD, Hayman EG, Ruoslahti E.Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell. 1981 Oct;26(2 Pt 2):259-67.
    66. Liu J, Thorp SC. Cell surface heparan sulfate and its roles in assisting viral infections.Med Res Rev. 2002 Jan;22(1):1-25. Review.
    67. Mulloy B, Linhardt RJ. Order out of complexity--protein structures that interact with heparin. Curr Opin Struct Biol. 2001
    68. Ram Sasisekharan, James R. Myette The Sweet Science of Glycobiology American Scientist 2003 Volume: 91 Number: 5 Page: 432 Oct;11(5):623-8. Review.
    69. Munoz EM, Linhardt RJ.Heparin-binding domains in vascular biology. Arterioscler Thromb Vasc Biol. 2004 Sep;24(9):1549-57. Epub 2004 Jul 1. Review
    70. P. Anton van der Merwe Surface Plasmon Resonance in Protein-Ligand interactions: A Practical Approach, edited by S Harding and P Z Chowdhry. Oxford University Press. 2000
    71. Nylander C, Liedberg B and Lind T 1982 Gas detection by. means of surface plasmon resonance. Sensors and Actuators 3:79-88
    72. Liedberg B, Nylander C and Lundstrom I Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 1983 4 299-304
    73. Bondeson K, Frostell-Karlsson A, Fagerstam L, Magnusson G.Lactose repressor-operator DNA interactions: kinetic analysis by a surface plasmon resonance biosensor. Anal Biochem. 1993 Oct;214(1):245-51.
    74. Fagerstam LG, Frostell A, Karlsson R, Kullman M, Larsson A, Malmqvist M, Butt H.Detection of antigen-antibody interactions by surface plasmon resonance. Application to epitope mapping. J Mol Recognit. 1990 Oct-Dec;3(5-6):208-14.
    75. Kooyman, R.P.H., Bruijn, H.E. de, Eenink, R.G., & Greve, J. Surface plasmon resonance as a bioanalytical tool. Journal of molecular structure 1990. 218, 345-350.
    76. 張瑞芳、林啟萬 表面電漿子共振式生物感測器之研發與應用 科儀新知第二十三卷第五期91.4
    77. www.biotech.iastate.eduilities/protein/seminars/BIACore/TechnologyNotes/TechnologyNote1.pd/facf Surface Plasmon Resonance Technology Note 1
    78. 馬立人、蔣中華 生物晶片 第二版 2003 p.287~308
    79. http://chem.ch.huji.ac.il/~eugeniik/spr.htm Surface Plasmon Resonance - a method to analyze interfacial optical properties and to develop biosensors
    80. http://www.biacore.com
    81. Kretschmann E Determination of optical constants of metals by excitation of surface plasmons Z. Phys. 1971 241 313–24
    82. B. Liedberg, I. Lundstrom, E. Stenberg, Principles of biosensing. with an extended coupling matrix and surface plasmon reso-. nance, Sensors and Actuators 1993 B 11 63–72
    83. Zhukov A, Schurenberg M, Jansson O, Areskoug D, Buijs J. Integration of surface plasmon resonance with mass spectrometry: automated ligand fishing and sample preparation for MALDI MS using a Biacore 3000 biosensor. J Biomol Tech. 2004 Jun;15(2):112-9
    84. http://chem.ch.huji.ac.il/~eugeniik/spr.htm Surface Plasmon Resonance - a method to analyze interfacial optical properties and to develop biosensors
    85. Charles T. Campbell Surface Plasmon Resonance (SPR) Biosensor Development
    86. Dubs MC, Altschuh D, Van Regenmortel MH. Interaction between viruses and monoclonal antibodies studied by surface plasmon resonance. Immunol Lett. 1992 Jan;31(1):59–64
    87. Miura, Y.; Kimura, S.; Imanishi, Y.; Umemura, J.; “Oriented helical peptide layer on the carboxylate- terminated alkanethiol immobilized on a gold surface” Langmuir 1999, 15, 1155-1160
    88. Yang MS; Yau HCM; Chan HL Adsorption kinetics and ligand-binding properties of thiol-modified double-stranded DNA on a gold surface LANGMUIR 1998 14 (21): 6121-6129
    89. M. Boncheva, L. Scheibler, P. Lincoln, H. Vogel and B. Akerman: Design of oligonucleotide arrays at interfaces. Langmuir 1999. 15, 4317-4320
    90. Johne, B., M. Gadnell, and K. Hansen. Epitope mapping and binding kinetics of monoclonal antibodies studied by real time biospecific interaction analysis using surface plasmon resonance. J. Immunol. Methods. 1993. 160:191-198
    91. http://www.ym.edu.tw/ic/Instrument/BIAcore.htm
    92. http://www.biacore.com/lifesciences/products/sensor_chips/guide/index.html Sensor Chips
    93. http://www.biacore.com/lifesciences/products/systems_overview/x/system_information/index.html Biacore® X
    94. The QIAexpressionist A handbook for high-level expression and purification of 6xHis-tagged proteins
    95. LeBrun LA, Linhardt RJ. Degradation of heparan sulfate with heparin lyases. Methods Mol Biol. 2001;171:353-61.
    96. BIAsimulation Software Handbook
    97. BIAevaluation Software Handbook
    98. BIAtechnology Handbook
    99. BIAapplications Handbook
    100. http://www.biotech.iastate.edu/facilities/protein/seminars/BIACore/index.html
    101. U.S. Department of Energy primer on molecular genetics 1992 p.20
    102. Amersham Biosciences Protein Electrophoresis technical manual p.2
    103. Amersham Biosciences Protein Electrophoresis technical manual p.11
    104. Stratagene Quick Change Site-Directed Mutagenesis Kit Manuals p.3
    105. http://www.piercenet.com/files/1296dh4.pdf Pierce BCA Protein Assay Kit Manuals
    106. Origin Soft 7.5
    107. Novagen pEt32a-c maps
    108. 林振文、余慶宏、朱一民、吳夙欽 日本腦炎第三區域重組蛋白免疫性與微脂粒佐劑之應用
    109. Wu SC, Yu CH, Lin CW, Chu IM.The domain III fragment of Japanese encephalitis virus envelope protein: mouse immunogenicity and liposome adjuvanticity.Vaccine. 2003 Jun 2;21(19-20):2516-22
    110. Liu J, Thorp SC. Cell surface heparan sulfate and its roles in assisting viral infections. Med Res Rev. 2002 Jan;22(1):1-25. Review.
    111. LeBrun LA, Linhardt RJ. Degradation of heparan sulfate with heparin lyases. Methods in Molecular Biology Vol.171
    112. Liu J, Thorp SC. Cell surface heparan sulfate and its roles in assisting viral infections.Med Res Rev. 2002 Jan;22(1):1-25. Review.
    113. I. Capila & RJ Linhardt "Heparin-protein interactions," Angew. Chem. Int. Ed. 2002 41: 390-412.
    114. Invitrogen pRset A,B,C map version: Version D 11/13/01
    115. DNAStar Protean 5.01
    116. Lin CW, Wu SC. A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites. J Virol. 2003 Feb;77(4):2600-6.
    117. Yamshchikov V, Mishin V, Cominelli F.A new strategy in design of +RNA virus infectious clones enabling their stable propagation in E. coli. Virology. 2001 Mar 15;281(2):272-80.
    118. Mason PW, Pincus S, Fournier MJ, Mason TL, Shope RE, Paoletti E.Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology. 1991 Jan;180(1):294-305.
    119. Konishi E, Pincus S, Paoletti E, Shope RE, Burrage T, Mason PW.Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology. 1992 Jun;188(2):714-20.
    120. Chang GJ, Hunt AR, Davis B.A single intramuscular injection of recombinant plasmid DNA induces protective immunity and prevents Japanese encephalitis in mice. J Virol. 2000 May;74(9):4244-52.
    121. Konishi E, Mason PW.Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J Virol. 1993 Mar;67(3):1672-5.
    122. 江政儒 新穎性細胞貼附材質的開發:重組日本腦炎病毒蛋白 國立清華大學/生命科學系/92/碩士/92NTHU510500
    123. Capila I, Linhardt RJ. Heparin-protein interactions.Angew Chem Int Ed Engl. 2002 Feb 1;41(3):391-412. Review.
    124. Chen LK, Lin YL, Liao CL, Lin CG, Huang YL, Yeh CT, Lai SC, Jan JT, Chin C. Generation and characterization of organ-tropism mutants of Japanese encephalitis virus in vivo and in vitro. Virology. 1996 Sep 1;223(1):79-88.
    125. Su CM, Liao CL, Lee YL, Lin YL. Highly sulfated forms of heparin sulfate are involved in japanese encephalitis virus infection. Virology. 2001 Jul 20;286(1):206-15.
    126. Cecilia D, Gould EA. Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology. 1991 Mar;181(1):70-7.
    127. Monath TP, Arroyo J, Levenbook I, Zhang ZX, Catalan J, Draper K, Guirakhoo F. Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines. J Virol. 2002 Feb;76(4):1932-43.
    128. Lever R, Page CP. Novel drug development opportunities for heparin. Nat Rev Drug Discov. 2002 Feb;1(2):140-8.
    129. Williams DT, Wang LF, Daniels PW, Mackenzie JS. Molecular characterization of the first Australian isolate of Japanese encephalitis virus, the FU strain. J Gen Virol. 2000 Oct;81(Pt 10):2471-80.
    130. Nga PT, del Carmen Parquet M, Cuong VD, Ma SP, Hasebe F, Inoue S, Makino Y, Takagi M, Nam VS, Morita K. Shift in Japanese encephalitis virus (JEV) genotype circulating in northern Vietnam: implications for frequent introductions of JEV from Southeast Asia to East Asia. J Gen Virol. 2004 Jun;85(Pt 6):1625-31
    131. Wu SC, Lee SC. Complete nucleotide sequence and cell-line multiplication pattern of the attenuated variant CH2195LA of Japanese encephalitis virus. Virus Res. 2001 Jan;73(1):91-102.
    132. Cardin AD, Weintraub HJ. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989;9:21–32.
    133. Cardin AD, Weintraub HJ. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989;9:21–32.
    134. Margalit H, Fischer N, Ben-Sasson SA. Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem. 1993;268:19228–19231.
    135. Fromm JR, Hileman RE, Caldwell EE, Weiler JM, Linhardt RJ. Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys. 1997;343:92–100.
    136. Fromm JR, Hileman RE, Caldwell EEO, Weiler JM, Linhardt RJ. Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch Biochem Biophys. 1995;323:279–287.
    137. Pearson RG. Hard and soft acids and bases. J Am Chem Soc. 1963;85:3533–3539.
    138. Caldwell EE, Nadkarni VD, Fromm JR, Linhardt RJ, Weiler JM. Importance of specific amino acids in protein binding sites for heparin and heparan sulfate. Int J Biochem Cell Biol. 1996;28:203–216.
    139. Verrecchio A, Germann MW, Schick BP, Kung B, Twardowski T, San Antonio JD. Design of peptides with high affinities for heparin and endothelial cell proteoglycans. J Biol Chem. 2000;275:7701–7707.
    140. Mulloy B, Linhardt RJ. Order out of complexity-protein structures that interact with heparin. Curr Opin Struct Biol. 2001;11:623–628.
    141. Moy FJ, Seddon AP, Bohlen P, Powers R. High-resolution solution structure of basic fibroblast growth factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Biochemistry.1996;35:13552–13561.
    142. Peters-Libeu C, Lund-Katz S, Phillips M, Wehrli S, Herna´iz MJ, CapilaI, Linhardt RJ, Raffai R, Newhouse YM, Zhou FM, Weisgraber KH.New insights into the heparan sulfate proteoglycan-binding activity of apolipoprotein E4. J Biol Chem. 2001;276:39138–39142.
    143. Mikhailov D, Young HC, Linhardt RJ, Mayo KH. Heparin dodecasaccharide-binding to platelet factor-4 and growth-related proteinintroduction of a partially folded state and implications for heparininduced thrombocytopenia. J Biol Chem. 1999;274:25317–25329.
    144. Peterson FC, Elgin ES, Nelson TJ, Zhang F, Hoeger TJ, Linhardt RJ, Volkman BF. Identification and characterization of a glycosaminoglycan recognition element of the C chemokine lymphotactin. J Biol Chem. 2004;279:12598–12604.
    145. Capila I, Linhardt RJ. Heparin-protein interactions. Angew Chem Int Ed Engl. 2002;41:390–412.
    146. J. J. Hopfield Theory of the Contribution of Excitons to the Complex Dielectric Constant of CrystalsPhys. Rev. 1958 112, 1555–1567
    147. Kovacs G. Optical excitation of surface plasmon-polaritons in lay- ered media. In: Boardman AD, ed. Electromagnetic surface modes. New York, NY: John Wiley & Sons Ltd., 1982, pp. 143–200.
    148. E. A. Stern and R. A. Ferrell Surface Plasma Oscillations of a Degenerate Electron GasPhys. Rev. 1960120, 130–136
    149. Raether H. Surface plasma oscillations and their applications. Phys Thin Films 1977;9: 145-244.
    150. Karlsson, R., H. Roos, L. Fägerstam, and B. Persson.. Kinetic and concentration analysis using BIA technology. Methods: A Companion to Methods Enzymol. 1994 6:99-110
    151. Karlsson, R. et all; Analysis of active antibody concentration. Separation of affinity and concentration parameters; Journal of Immunological Methods; 166 (1): 75-84; (1993).
    152. Dubs MC, Altschuh D, Van Regenmortel MHV: Interaction between viruses and monoclonal antibodies studied by surface plasmon resonance. Immunol Lett 1991;31:59-64.
    153. Altschuh D, Dubs MC, Weiss E, Zeder-Lutz G, Van Regenmortel MH. Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance. Biochemistry. 1992 Jul 14;31(27):6298-304.
    154. Miura Y, Kimura S, Imanishi Y, Umemura J, Oriented Helical Peptide Layer on the Carboxylate-Terminated Alkanethiol Immobilized on a Gold Surface Langmuir 15, 1155-1160 (1999)
    155. E Tarrab, L Berthiaume, S Grothe, M O'Connor-McCourt, J Heppell, and J Lecomte Evidence of a major neutralizable conformational epitope region on VP2 of infectious pancreatic necrosis virus J Gen Virol 1995 76: 551-558.
    156. Mulloy B, Linhardt RJ. Order out of complexity-protein structures that interact with heparin. Curr Opin Struct Biol. 2001;11:623–628.
    157. Ward, L.D., Shi, P. and Simpson R.J. Binding of anti-human-Interleukin-6 monoclonal antibodies to synthetic peptides of human Interleukin-6 studied using surface plasmon resonance. Biochem. Int. 1992 26:559-565.
    158. Johne B, Gadnell M, Hansen K. Epitope mapping and binding kinetics of monoclonal antibodies studied by real time biospecific interaction analysis using surface plasmon resonance. J Immunol Methods. 1993 Apr 2;160(2):191–198.
    159. Minunni M, Simultaneous determination of β2-microglobulin and. IgE using real-time biospecific interaction analysis(BIA) Anal. Lett.,. 1995, 28, 933-944.
    160. Raut S., Gaffney P. J. Interaction of heparin with fibrinogen using surface plasmon resonance technology: investigation of heparin binding site on fibrinogen. Thromb. Res., 1996 81: 503-509
    161. QIAGEN Plasmid Mini Handbook
    162. Zhang F, Fath M, Marks R, Linhardt RJ. A highly stable covalent conjugated heparin biochip for heparin-protein interaction studies.Anal Biochem. 2002 May 15;304(2):271-3.
    163. Marks RM, Lu H, Sundaresan R, Toida T, Suzuki A, Imanari T, Hernaiz MJ, Linhardt RJ. Probing the interaction of dengue virus envelope protein with heparin: assessment of glycosaminoglycan-derived inhibitors.J Med Chem. 2001 Jun 21;44(13):2178-87.
    164. Wu SC, Chiang JR, Lin CW. Novel cell adhesive glycosaminoglycan-binding proteins of Japanese encephalitis virus.Biomacromolecules. 2004 Nov-Dec;5(6):2160-4.
    165. Wu SC, Yu CH, Lin CW, Chu IM.The domain III fragment of Japanese encephalitis virus envelope protein: mouse immunogenicity and liposome adjuvanticity.Vaccine. 2003 Jun 2;21(19-20):2516-22.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE