簡易檢索 / 詳目顯示

研究生: 林欣怡
Lin, Hsin-Yi
論文名稱: 以小波轉換為基礎之心電圖雜訊消除及R波偵測
Discrete-Wavelet-Transform-Based Noise Reduction and R Wave Detection for ECG Signals
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 蔡佩芸
黃元豪
楊家驤
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 58
中文關鍵詞: 心電圖小波轉換雜訊消除R波偵測
外文關鍵詞: Electrocardiogram, Wavelet transform, Noise reduction, R wave detection
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據衛生署公布的數據來看,心臟疾病位居台灣前十大死因的第二名,因此越來越受人們的重視,而心電圖訊號是最常用來診斷心臟疾病的依據,為了能長時間的紀錄和監控病人狀態,可攜式的量測儀器已成為現在發展的主流,可攜式量測儀器的發展除了要注意體積小和低功耗以外,對於雜訊的處理也是重要的課題。

    本論文主要包含了兩個主題,一個為去除量測中因為移動或是任何外在因素所造成的雜訊,另一個為R波的偵測讓我們能夠精確計算心跳速率。選擇的方法為小波分析,小波分析的特性為可同時得到時間和頻率兩種狀態下的結果,近年來的應用常被用來消除雜訊。我們先利用不同種類的小波轉換及不同的thresholding方法去做雜訊的分析,根據得到的結果決定使用Symlets wavelets中的sym5為母波以及結合soft thresholding來做第一階段的去雜訊,之後將處理完的訊號根據頻段,選擇合適的層級作後續R波的尋找,最後再利用R波的位置進行第二次的去雜訊動作。

    本論文提出的演算法利用MIT心律不整資料庫來驗證,錯誤率為0.65%。 對於消除肌電訊號造成的干擾的部分,在訊雜比為5dB的狀態下,使用我們所提出的演算法進行去雜訊動作後,訊雜比的改善量可以達到10dB以上。而將提出來的演算法,對實際量測到的心電圖訊號進行分析,針對R波的部分,在運動速度9km/hr以下,不論是走路跑步或是上下樓梯,R波能夠精確判斷。由此看來,我們所提出的演算法可以正確的找出R波,並能有效的清除雜訊,讓心電圖訊號能有更正確的解讀。


    According to the data released by the Department of Health, Executive Yuan of Taiwan the heart disease was ranked number two among the top ten causes of death in Taiwan. Therefore, people pay more attention to heart disease now. The electrocardiogram (ECG) signal is the most commonly used condition to diagnose the heart disease. For long-term monitoring, the portable measuring instruments have become the mainstream. In addition to focus on the small size and low power of the development of portable measuring instruments, noise reduction is also an important topic.

    In this thesis, there are two main research topics about ECG signal proposed. One is noise reduction, and the other is R peaks detection. Both of the two algorithms are based on discrete wavelet transform (DWT). Wavelet transform (WT) is popular for signal processing recently which can supply time-frequency analysis. Thus, WT is efficient for analyzing non-stationary signals like ECG signal. Different bases, three thresholding algorithms and two kinds of wavelet transform are used to solve different kinds of noises in order to find the proper method of noise reduction. The signal-to-noise ratio (SNR) is used to evaluate the result. From the simulation results, the Symlets wavelets (sym5) and soft-thresholding are chosen as the wavelet function and thresholding method, respectively. Employ them to do noise correction at the first denoised stage. The second stage is R wave detection. The MIT-BIH arrhythmia database, the sampling rate is 360Hz, is used for example. As for QRS complex characteristics, the frequency range is from 5 to 40 Hz. Thus, we chose to reconstruct the decomposition level 3 to 5, because the frequency range of which is from 5.6 to 45 Hz. Choosing the adaptive threshold and window size is the key point for the result of error rate. Using two thresholds method leads to better performance, compared to using one threshold method. At the last stage, does noise correction again. In terms of R wave positions, the novel method is proposed for eliminating the electromyogram (EMG) signal.

    MIT-BIH arrhythmia database is utilized to verify our simulation results for R wave detection. The algorithm for R wave detecion has a sensitivity of 99.70% and a positive predictivity of 99.65%. The error rate is 0.65% under all kinds of situation (0.37% if ignoring 3 worst cases). For noise correction, the improvement SNR is achieved at least 9.5dB at SNR 5dB, and most of the improvement SNR are better than other methods at least 1dB. To apply presented algorithms for the portable ECG device, all R peaks can be detected no matter when people walk, run or go up and down stairs below 9km/hr. Thus, the proposed method can identify R wave correctly and reduce the noise effectively, so that the diagnosis of heart disease can be more accurate.

    Abstract i 1 Introduction 1 1.1 Backgrounds . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Feature Extraction Methods for ECG Signal . . . . 1 1.1.2 Noise Reduction Methods for ECG Signal . . . . . . 2 1.2 Motivation of Thesis . . . . . . . . . . . . . . . . 4 1.3 Main Contributions . . . . . . . . . . . . . . . . . 4 1.4 Organization of Thesis . . . . . . . . . . . . . . . 5 2 ECG Signal 7 2.1 Overview of ECG signal . . . . . . . . . . . . . . . 7 2.1.1 ECG Fundamental . . . . . . . . . . . . . . . . . 7 2.1.2 Standard 12 Lead ECG . . . . . . . . . . . . . . . 7 2.1.3 ECG Morphology . . . . . . . . . . . . . . . . . . 9 2.2 MIT-BIH Arrhythmia Database . . . . . . . . . . . . 11 3 Wavelet Transform and Noise Reduction 13 3.1 Wavelet Transform . . . . . . . . . . . . . . . . . 13 3.1.1 Introduction . . . . . . . . . . . . . . . . . . . 13 3.1.2 Continuous Wavelet Transform . . . . . . . . . . . 14 3.1.3 Discrete Wavelet Transform . . . . . . . . . . . . 15 3.1.4 Stationary Wavelet Transform . . . . . . . . . . . 16 3.1.5 Wavelet Families . . . . . . . . . . . . . . . . . 17 3.2 Noise Reduction Based on Wavelet Transform . . . . . 18 3.2.1 Selecting Threshold . . . . . . . . . . . . . . . 18 3.2.2 Thresholding Methods . . . . . . . . . . . . . . . 20 4 Proposed Algorithm for Noise Reduction and R Wave Detection 23 4.1 The Block Diagram of Proposed Algorithm . . . . . . 23 4.2 Noise Reduction . . . . . . . . . . . . . . . . . . 25 4.2.1 MIT-BIH Noise Stress Test Database . . . . . . . . 25 4.2.2 Noise Reduction Analysis . . . . . . . . . . . . . 26 4.3 R Wave Detection . . . . . . . . . . . . . . . . . . 32 4.4 The Removal of EMG noise . . . . . . . . . . . . . . 36 5 Simulation and Measurement Results 41 5.1 Simulation Results . . . . . . . . . . . . . . . . . 41 5.1.1 Simulation Results and Comparisons for R Wave Detection . . . . . . . . . . . . . . . . . . . . . . . 41 5.1.2 Simulation Results and Comparisons for Removal of EMG Noise . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 Measurement Results for the Portable ECG Device . . 49 5.2.1 Introduction to the Mobile ECG Monitoring . . . . 49 5.2.2 Measurement Results . . . . . . . . . . . . . . . 50 6 Conclusion and FutureWorks 53 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . 53 6.2 Future Works . . . . . . . . . . . . . . . . . . . . 54

    [1] P. Mithun, P. C. Pandey, T. Sebastian, P. Mishra, and V. K. Pandey, “A Wavelet Based Technique for Suppression of EMG Noise and Motion Artifact in Ambulatory ECG,” in Proc. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Sep. 2011, pp. 7087–7090.
    [2] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” IEEE Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp. 230–236, Mar. 1985.
    [3] Z. Zidelmal, A. Amirou, M. Adnane, and A. Belouchrani, “QRS Detection Based on Wavelet Coefficients,” Computer Methods and Programs in Biomedicine, vol. 107, no. 3,
    pp. 490–496, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.cmpb.2011.12.004
    [4] C. Xiaomeng, “A New Real-Time ECG R-Wave Detection Algorithm,” in Proc. 2011 6th International Forum on Strategic Technology (IFOST), vol. 2, Aug. 2011, pp. 1252–1255.
    [5] Q. Xue, Y. H. Hu, and W. J. Tompkins, “Neural-Network-Based Adaptive Matched Filtering for QRS Detection,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 4, pp. 317–329, Apr. 1992.
    [6] R. Poli, S. Cagnoni, and G. Valli, “Genetic Design of Optimum Linear and Nonlinear QRS Detectors,” IEEE Transactions on Biomedical Engineering, vol. 42, no. 11, pp.
    1137–1141, Nov. 1995.
    [7] O. Sayadi and M. B. Shamsollahi, “Multi-Adaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction,” EURASIP Journal of Applied Signal Processing, vol. 2007, 2007.
    [8] M. Dai and S. L. Lian, “Removal of Baseline Wander from Dynamic Electrocardiogram Signals,” in Proc. 2009 2nd International Congress on Image and Signal Processing,
    Oct. 2009, pp. 1–4.
    [9] Y. Lian and J. H. Yu, “The Reduction of Noises in ECG Signal Using A Frequency Response Masking Based FIR Filter,” in Proc. 2004 IEEE International Workshop on Biomedical Circuits and Systems, Dec. 2004, pp. S2/4–17–20.
    [10] A. K. Ziarani and A. Konrad, “A Nonlinear Adaptive Method of Elimination of Power Line Interference in ECG Signals,” IEEE Transactions on Biomedical Engineering,
    vol. 49, no. 6, pp. 540–547, Jun. 2002.
    [11] D. A. Tong, K. A. Bartels, and K. S. Honeyager, “Adaptive Reduction of Motion Artifact in The Electrocardiogram,” in Proc. of the Second Joint EMBS/BMES Conference, vol. 2, 2002, pp. 1403–1404.
    [12] T. He, G. Clifford, and L. Tarassenko, “Application of ICA in Removing Artefacts from The ECG,” Neural Computing and Applications.
    [13] D. Zhang, “Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction,” in Proc. 2005. 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005, pp. 1212–1215.
    [14] M. Blanco-Velasco, B. Weng, and K. E. Barner, “ECG Signal Denoising and Baseline Wander Correction Based on the Empirical Mode Decomposition,” Computers in Biology and Medicine, vol. 38, no. 1, pp. 1–13, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0010482507001114
    [15] J. Loscalzo, Harrison’s Cardiovascular Medicine. McGraw-Hill Prof Med/Tech, May 2010.
    [16] “Electrocardiography.” [Online]. Available:
    http://en.wikipedia.org/wiki/Electrocardiography
    [17] “ECG Learning Center: The Standard 12 Lead ECG.” [Online]. Available: http://ecg.utah.edu/lesson/1
    [18] N. H, S. Mukherjee, and V. kumar, “Application of Wavelet Techniques in ECG Signal Processing: An Overview,” International Journal of Engineering Science and Technology (IJEST), vol. 3, no. 10, Oct. 2011.
    [19] “MIT-BIH Arrhythmia Database.” [Online]. Available:
    http://www.physionet.org/physiobank/database/mitdb/
    [20] “MIT-BIH Arrhythmia Database Directory.” [Online]. Available:
    http://www.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.htm
    [21] “MathWorks: Wavelet Toolbox.” [Online]. Available:
    http://www.mathworks.com/help/toolbox/wavelet/ref/wavemenu.html
    [22] C. Cai and P. d. B. Harrington, “Different Discrete Wavelet Transforms Applied to Denoising Analytical Data,” Journal of Chemical Information and Computer Sciences,
    vol. 38, no. 6, pp. 1161–1170, 1998.
    [23] D. L. Donoho, “De-noising by Soft-Thresholding,” IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 613–627, May 1995.
    [24] D. L. Donoho and J. M. Johnstone, “Ideal Spatial Adaptation by Wavelet Shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994. [Online]. Available:
    http://biomet.oxfordjournals.org/content/81/3/425.abstract
    [25] S. Guoxiang and Z. Ruizhen, “Three Novel Models of Threshold Estimator for Wavelet Coefficients,” in Wavelet Analysis and Its Applications, 2001, vol. 2251, pp. 145–150.
    [26] L. Su and G. Zhao, “De-Noising of ECG Signal Using Translation-InvariantWavelet De-Noising Method with Improved Thresholding,” in Proc. 2005 27th Annual International
    Conference of the Engineering in Medicine and Biology Society, Jan. 2005, pp. 5946–5949.
    [27] N. V. Thakor, J. G. Webster, and W. J. Tompkins, “Estimation of QRS Complex Power Spectra for Design of A QRS Filter,” IEEE Transactions on Biomedical Engineering, vol. BME-31, no. 11, pp. 702–706, Nov. 1984.
    [28] S. W. Chen, H. C. Chen, and H. L. Chan, “A Real-Time QRS Detection Method Based on Moving-Averaging Incorporating with Wavelet Denoising,” Computer Methods and Programs in Biomedicine, vol. 82, no. 3, pp. 187–195, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169260705002592
    [29] N. M. Arzeno, Z. D. Deng, and C. S. Poon, “Analysis of First-Derivative Based QRS Detection Algorithms,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 2,
    pp. 478–484, Feb. 2008.
    [30] C. C. Chan, W. C. Chou, C. W. Chen, Y. L. Ho, Y. H. Lin, and H. P. Ma, “Energy Efficient Diagnostic Grade Mobile ECG,” in Proc. 2012 IEEE 10th International New Circuits and Systems Conference (NEWCAS), Jun. 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE