研究生: |
劉凌嘉 Liu, Lin-Chia |
---|---|
論文名稱: |
陣列成長矽與矽化鈦異質接面之ㄧ維奈米結構製備與量測 Synthesis and Characterization of Pattern Growth Si, and Si/TiSi2 Heterostructure Junction Nanowire |
指導教授: |
周立人
Chou, Li-Jen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 奈米線 、矽 、矽化鈦 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由在1000 ℃和1 atm 條件下,可利用金屬薄膜、矽基板以及
金奈米顆粒,在1000 ℃和1 atm 條件下合成出矽奈米線。可調控之
矽奈米線直徑或是成長方向可經由不同大小尺寸的金奈米顆粒做為
催化劑和使用不同晶向的矽基板。剛產出的奈米材料的晶體結構、微
結構、化學成分、光學的性質,可分別透過X 光繞射儀、穿透式電子
顯微鏡、掃描穿透式電子顯微鏡、臨場穿透式電子顯微鏡去分析。另
外也會將可控制成長方向和半徑的矽奈米線當成模板,利用四氯化鈦
當成鈦的來源合成出矽與矽化鈦異質接面的奈米線。
實驗結果發現,利用臨場穿透式電子顯微鏡觀測矽與矽化鈦異質
接面的奈米線,在提供外加鈦來源的情形下,鈦與矽與矽化鈦異質接
面的奈米線反應的結果與薄膜反應不同。此種二階段合成的矽與矽化
鈦異質接面的奈米線,提供了一個製造功能性奈米元件,極具潛力與
發展的合成方法。
Chapter 1
[1.1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature,
354, (1991), pp.56-58.
[1.2] J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W.
Kim, “Soft Solution Route to Directionally Grown ZnO
Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet
Laser,” Adv. Mater., 15, (2003), pp 1911–1914.
[1.3] Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C. D.
Chen, “TaSi2 Nanowires: A Potential Field Emitter and
Interconnect,” Nano Lett., 6, (2006), pp 1637-1644.
[1.4] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P.
Yang, “Single-crystal Gallium Nitride Nanotubes,” Nature, 422,
(2003), pp 599-602.
[1.5] W. Wang, B. Zeng, J. Yang, B. Poudel, J. Huang, M. J. Naughton,
and Z. Ren, “Aligned Ultralong ZnO Nanobelts and Their
Enhanced Field Emission,” Adv. Mater., 18, (2006), pp
3275–3278.
[1.6] M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresselhaus,
“Plasmon Excitation Modes in Nanowire Arrays,” J. Appl. Phys.,
89, (2001), pp.2733-2736.
[1.7] Yiying Wu, and Peidong Yang, “Germanium/Carbon
61
Core-Sheath Nanostructures,” Appl. Phys. Lett., 77, (2000),
pp.43-45.
[1.8] T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and
Ulrich G□sele, “Synthesis of Vertical High-Density Epitaxial
Si(100) Nanowire Arrays on a Si(100) Substrate Using an
Anodic Aluminum Oxide Template,” Adv. Mater., 19, (2007), pp
917–920
[1.9] J. H. Paek, T. Nishiwaki, M. Yamaguchi, and N. Sawaki,
“MBE-VLS Growth of GaAs nanowires on (111) Si Substrate,”
phys. stat. sol. (c), 5, (2008), pp 2740–2742.
[1.10] S. A. Dayeh, D. P. R. Aplin, X. Zhou, P. K. L. Yu, E. T. Yu, and D.
Wang “High Electron Mobility InAs Nanowire Field-Effect
Transistors,” Small, 3, (2007), pp 326 – 332.
[1.11] P. D. Yang, and C. M. Lieber, “Nanostructured high-temperature
superconductors:Creation of Strong-pinning Columnar Defects
in Nanorod/superconductor Composites,” J. Mater. Res., 12,
(1997), pp 2981-2996.
[1.12] B. D. Bao, Y. F. Chen, and N. Wang, “Formation of ZnO
Nanostructures by a Simple Way of Thermal Evaporation,”
Appl. Phys. Lett., 81, (2002), pp 757-759.
[1.13] M. H. Huang, S. Mao, H. Feich, H.Yan, Y. Wu, H. Kind, E. Weber,
R. Russo, and P. Yang, “Room-Temperature Ultraviolet
62
Nanowire Nanolasers,” Science, 292, (2001), pp 1897-1899.
[1.14] Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin oxide
Nanowires, Nanoribbons, and Nanotubes,” J. Phys. Chem. B,
106, (2002), pp 1274-1279.
[1.15] X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W.
Meng, and L. D. Zhang, “Large-scale Synthesis of In2O3
Nanowires,” App. Phys. A, 74, (2002), pp 437-439.
[1.16] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee,
G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kee, “Catalytic
Growth of -Ga2O3 Nanowires by Arc Discharge,” Adv. Mater.,
12, (2000), pp 746-750.
[1.17] Y Y. W. Wang , C. H. Liang , G. Z. Wang , T. Gao , S. X. Wang , J.
C. Fan, and L. D. Zhang , “Preparation and Characterization of
Ordered Semiconductor CdO Nanowire Arrays,” J. Mater. Sci.
Lett., 20, (2001), pp 1687-1689.
[1.18] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Lead Oxide Nanobelts and
Phase Transformation Induced by Electron Beam Irradiation,”
Appl. Phys. Lett., 80, (2002), pp 309-311.
[1.19] Younan Xia, Peidong Yang, Yugung Sun, Yiying Wu, Brain Mayers,
Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Yan,
“One-Dimensional Nanostructures: Synthesis, Characterization,
and Applications,” Adv. Mater., 15, (2003), pp.353-389.
63
[1.20] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang,
D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3
Nanowires Prepared by Physical Evaporation,” Solid State
Communications, 109, (1999), pp.677–682.
[1.21] Y. Yao, F. Li, and S.T. Lee, “Oriented Silicon Nanowires on
Silicon Substrates from Oxide-Assisted Growth and Gold
Catalysts,” Chem. Phys. Lett., 406, (2005), pp.381-385.
[1.22] F.M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Gosele, D.D.
Ma, and S.T. Lee “Analysis of Silicon Nanowires Grown by
Combining SiO Evaporation with the VLS Mechanism,” J.
Electrochem. Soc., 151, (2004), pp.472-475.
[1.23] X.B Yan, T. Xu, S. Xu, G. Chen, Q.J. Xue, and S.R. Yang
“Polymer-Assisted Synthesis of Aligned Amorphous Silicon
Nanowires and their Core/Shell Structures with Au
Nanoparticles,” Chem. Phys. Lett., 397, (2004), pp.128-132.
[1.24] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H.
Xi, and S. Q. Feng, “ Growth of Amorphous Silicon Nanowires
via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett., 323,
(2000), pp 224-228.
[1.25] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S.
Q. Feng, “Controlled Growth of Oriented Amorphous Silicon
Nanowires via a Solid-Liquid-Solid (SLS) Mechanism,” Physica
E, 9, (2001), pp 305-309.
[1.26] A.I. Hochbaum, R. Fan, R. He, and P.D. Yang, “Controlled
Growth of Si Nanowire Arrays for Device Integration,” Nano.
Lett., 5, (2005), pp.457-460.
64
[1.27] L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L.
Long, U. Gosele, and T.Y. Tan, “Silicon Nanowhiskers Grown on
<111> Si Substrates by Molecular-Beam Epitaxy,” Appl. Phys.
Lett., 84, (2004), pp.4968-4971.
[1.28] K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, and J. Zhu, “Aligned
Single-Crystalline Si Nanowire Arrays for Photovoltaic
Applications,” Small, 1, (2005), pp.51062-1067.
[1.29] H.C. Hsu, W.W. Wu, H.F. Hsu, and L.J. Chen “Growth of
High-Density Titanium Silicide Nanowires in a Single Direction
on a Silicon Surface,” Nano. Lett., 7, (2007), pp.885-889.
[1.30] B. Liu, Y. Wang, S. Dilts, T.S. Mayer, and S.E. Mohney,
“Silicidation of Silicon Nanowires by Platinum,” Nano. Lett., 7,
(2007), pp.818-824.
[1.31] H.C. Hsu, H.F. Hsu, T.F. Chiang, K.F. Liao, and L.J. Chen “Effects
of Substrate Temperature on the Initial Growth of Titanium
Silicides on Si(111) ,” Jpn. J. App. Phys, 43, (2004), pp.4537-4540.
[1.32] Lincoln J. Lauhon, Mark S. Gudiksen, Deli Wang, and Charles M.
Lieber, “Epitaxial core-shell and core-multishell nanowire
heterostructures,” Nature, 420, (2002), pp.57-61.
[1.33] Yue Wu, Jie Xiang, Chen Yang, Wei Lu, and Charles M. Lieber,
“Single-Crystal Metallic Nanowires and Metal/Semiconductor
Nanowire Heterostructures,” Nature, 430, (2004), pp.61-65.
[1.34] Zhaohui Zhong, Fang Qian, Deli Wang, and Charles M. Lieber,
“Synthesis of p-Type Gallium Nitride Nanowires for Electronic
and Photonic Nanodevices,” Nano Lett., 3, (2003), pp.343-346.
65
Chapter 3
[3.1] R.Q. Zhang, Y. Lifshitz, and S.T. Lee, “Oxide-Assisted Growth of
Semiconducting Nanowires,” Adv. Mater., 15, (2003), pp.635-640.
[3.2] Y. Yao, F. Li, and S.T. Lee, “Oriented Silicon Nanowires on
Silicon Substrates from Oxide-Assisted Growth and Gold
Catalysts,” Chem. Phys. Lett., 406, (2005), pp.381-385.
[3.3] F.M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Gosele, D.D.
Ma, and S.T. Lee “Analysis of Silicon Nanowires Grown by
Combining SiO Evaporation with the VLS Mechanism,” J.
Electrochem. Soc., 151, (2004), pp.472-475.
[3.4] X.B Yan, T. Xu, S. Xu, G. Chen, Q.J. Xue, and S.R. Yang
“Polymer-Assisted Synthesis of Aligned Amorphous Silicon
Nanowires and their Core/Shell Structures with Au
Nanoparticles,” Chem. Phys. Lett., 397, (2004), pp.128-132.
[3.5] Y.Y Wong, M. Yahaya, M.M. Salleh, and B.Y. Majlis “Controlled
Growth of Silicon Nanowires Synthesized vas
Solid-Liquid-Solid Mechanism,” Sci. Technol. Adv. Mater., 6,
(2005), pp.330-334.
[3.6] F. Qian, Y. Li, S. Gradecak, D. Wang, C. Barrelet, and C. M. Lieber,
“Gallium Nitride-Based Nanowire Radial Heterostructures for
Nanophotonics,” Nano Lett., 4, (2004), pp 1975-1979.
[3.7] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire
Nanosensors for Highly Sensitive and Selective Detection of
Biological and Chemical Species,” Science, 293, (2001), pp
1289-1292.
[3.8] X. D. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale
Hexagonal-Patterned Growth of Aligned ZnO Nanorods for
Nano-optoelectronics and Nanosensor Arrays,” Nano Lett., 4,
(2004), pp 423-426.
66
[3.9] M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler,
M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic
Measurements in Single-Nanowire Silicon Solar Cells,” Nano
Lett., 8, (2008), pp 710-714.
[3.10] M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D.
Chen, Y. W. Lan, and L. J. Chen, “Nitrogen-Doped Tungsten
Oxide Nanowires: Low Temperature Synthesis on Si and the
Electrical, Optical, and Field-Emission Properties,” Small, 3,
(2007), pp 658-664.
[3.11] M. T. Chang, L. J. Chou, C. H. Hsieh, Y. L. Chueh, Z. L. Wang, Y.
Murakami, and D. Shindo, “Magnetic and Electrical
Characterizations of the Half-Metallic Magnetite (Fe3O4)
Nanowires,” Adv. Mater., 19, (2007), pp 2290-2294.
[3.12] Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for Integrated
Multicolor Nanophotonics,” Small, 1, (2005), pp 142-147.
[3.13] A. Javey, S. Nam, R. S. Friedman, H. Yan, and C. M. Lieber,
“Layer-by-Layer Assembly of Nanowires for
Three-Dimensional, Multifunctional Electronics,” Nano Lett., 7,
(2007), pp 773-777.
[3.14] H.C. Hsu, W.W. Wu, H.F. Hsu, and L.J. Chen “Growth of
High-Density Titanium Silicide Nanowires in a Single Direction
on a Silicon Surface,” Nano. Lett., 7, (2007), pp.885-889.
[3.15] H.C. Hsu, H.F. Hsu, T.F. Chiang, K.F. Liao, and L.J. Chen “Effects
of Substrate Temperature on the Initial Growth of Titanium
Silicides on Si(111) ,” Jpn. J. App. Phys, 43, (2004), pp.4537-4540.
[3.16] T. Soubiron, R. Stiufiuc, L. Patout, D. Deresmes, B. Grandidier, D.
Stievenard, J. Koble, M. Maier, “Transport Limitations and
Schottky Barrier Height in Titanium Silicide Nanowires Grown
on the Si(111) Surface,” App. Phys. Lett., 90, (2007), pp.102112.
67
[3.17] B. Liu, Y. Wang, S. Dilts, T.S. Mayer, and S.E. Mohney,
“Silicidation of Silicon Nanowires by Platinum”, Nano. Lett., 7,
(2007), pp.818-824.
[3.18] M.X. Zhang and P.M. Kelly “Application of edge-to-edge
matching model to understand the in-plane texture of TiSi2
(C49) thin films on (001)Si,” surface Scripta Materialia 55 (2006)
613–616
[3.19] T. Xiao and Robert A. Wolkowb “Scanning tunneling microscopy
characterization of low-profile crystalline TiSi2 microelectrodes
on a Si (111) surface,” Appl. Phys. Lett. 86, 203101 (2005)
[3.20] M.Bhaskaran1, S.Sriram1, “Characterization of C54 titanium
silicide thin films by spectroscopy, microscopy and
diffraction,”J. Phys. D: Appl. Phys. 40 (2007) 5213–5219
[3.21] H.C.Hsu , W.W. Wu, H.F. Hsu, and L.J Chen,“Growth of
High-Density Titanium Silicide Nanowires in a Single Direction
on a Silicon Surface,” Nano Lett., Vol. 7, No. 4, 2007
[3.22] Y. Zhu, D. Zhao, R. Li, and J. Liua_“Self-aligned TiSi2 /Si
heteronanocrystal nonvolatile memory,” Appl. Phys. Lett. 88,
103507 (2006)
[3.23] Y. Z., B. Li, and J. Liua, G. F. Liu and J. A. Yarmoff “TiSi2 /Si
heteronanocrystal metal oxide semiconductor field effect
transistor memory,” Appl. Phys. Lett. 89, 233113 (2006)
[3.24] Y. Zhu, B. Li, and J. Liua_“Fabrication and characterization of
TiSi2 /Si heteronanocrystal metal oxidesemiconducto
rmemories,” J. Appl. Phys. 101, 063702 (2007)
[3.25] H.K.Lin , Y.F. Tzeng, C.H. Wang, N.H. Tai, I.N. Lin, C.Y. Lee, and
H.T.Chiu, “Ti5Si3 Nanowire and Its Field Emission Property,”
Chem. Mater., Vol. 20, No. 7, 2008
[3.26] J. Du, P. Du,P. Hao,Y. Huang, Z. Ren, G. Han,W. Weng , and G.
68
Zhao “Growth Mechanism of TiSi Nanopins on Ti5Si3 by
Atmospheric Pressure Chemical Vapor Deposition,”J. Phys.
Chem. C 2007, 111, 10814-10817
[3.27] R. J. Kematick and C. E. Myers “Thermodynamics of the Phase
Formation of the Titanium Silicides,”Chem. Mater. 1996, 8,
287-291
[3.28] L.J. Chen “Solid state amorphization in metal/Si systems,”
Materials Science and Engineering, R29 (2000) 115-152
[3.29] T.H. Yang, S.L. Cheng, L.J. Chen “Autocorrelation function
analysis of phase formation in the initial stage of interfacial
reactions of multilayered titanium–silicon thin films,” Thin Solid
Films 469–470 (2004) 513–517
[3.30] R. Pretorius“Concentration-controlled phase selection of silicide
formation during reactive deposition,” Appl. Phys. Lett., Vol. 74,
No. 21, 24 May 1999
[3.31] T. H. Yang, K. S. Chi, and L. J. Chena_“Formation of Ti silicide
nanocrystals in the amorphous interlayers in ultrahigh vacuum
deposited Ti thin films on (001) Si,”J. Appl. Phys. 98, 034302
(2005)
[3.32] K.C. Lu, W.W. Wu, H.W. Wu, C. M. Tanner, J. P. Chang, L. J. Chen,
and K. N. Tu,“In situ Control of Atomic-Scale Si Layer with
Huge Strain in the Nanoheterostructure NiSi/Si/NiSi through
Point Contact Reaction,” Nano Lett., Vol. 7, No. 8, 2007
[3.33] Y.C. Chou, W.W. Wu, S.L. Cheng, B.Y. Yoo, N. Myung, L J. Chen,
and K. N. Tu“In-situ TEM Observation of Repeating Events of
Nucleation in Epitaxial Growth of Nano CoSi2 in Nanowires of
Si,” Nano Lett., Vol. 8, No. 8, 2008
[3.34] A.M. Mohammad, S. Dey, K.K. Lew, J.M. Redwing, and S.E.
Mohney “Fabrication of Cobalt Silicide Nanowire Contacts to
69
Silicon Nanowires,”, J. Electrochem. Soc., 354, (2003),
pp.577-580.