簡易檢索 / 詳目顯示

研究生: 秦啟航
Chin, Chi Hang
論文名稱: CMOS-MEMS共振閘極電晶體震盪器
A CMOS-MEMS Resonant Gate Field Effect Transistor Oscillator
指導教授: 李昇憲
Li, Sheng Shian
口試委員: 鄭裕庭
盧尚成
方維倫
羅炯成
施文彬
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 120
中文關鍵詞: CMOS微機電共振閘極電晶體微機電共振器微機電震盪器相位雜訊
外文關鍵詞: CMOS MEMS, RGFET, MEMS resonator, MEMS oscillator, Phase noise
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,透過現有之TSMC 0.35μm CMOS製程實現了CMOS-MEMS共振閘極電晶體(RGFET),與現有傳統的電容式微機電共振器相比較,RGFET透過電晶體固有的增益,可以進一步放大共振器的運動電流訊號。在共振閘極部分採取了雙端固定樑的設計,並且與浮閘式電晶體結合形成RGFET,如此的設計可以同時得到具有高品質因數的共振器與高W/L值的元件。透過對元件的行為理解並推導出其模型,此外,我們亦設計適當的製程流程以得到次微米空氣間隙,將共振器的運動阻抗降低到10 kΩ。
    為了達到微機電震盪器的設計,利用同樣的製程平台,將元件改成陣列式架構以降低運動阻抗,在陣列設計的助益下,共振器的運動阻抗降低到5 kΩ,同時其power handling亦得到改善,使所形成的震盪器在遠端相位雜訊有了相當好的呈現。在陣列式雙端固定樑的設計中,我們採取了高剛性機械組合樑,以確保陣列設計可以得到最大的效益,此外,我們亦將固有的增益模型,從單根推展至陣列的型態,其等效震盪器電路模型也一併呈現。從實驗的量測結果來看,陣列的設計除了可以實現Pierce震盪器,也直接的改善了相位雜訊。
    在本論文的最後,我們提出了利用電洞能帶穿隧的充電方法,取代之前所使用的手動充電方法,此方法可以提供元件一個更加長效穩定的操作偏壓。同時,我們更進一步改善元件整體設計,同時從機械結構以及電晶體著手,實驗量測結果得知,此共振器具有品質因數1,800以及目前領域中最低的運動阻抗1.1 kΩ。在各特性都獲得改善的情形下,其所形成的微機電震盪器,其相位雜訊呈現可以分別在近端達到-96 dBc/Hz和遠端的-122 dBc/Hz。


    A charge-biased CMOS-MEMS resonant gate field effect transistor (RGFET) composed of a metal/oxide composite resonant-gate structure and an FET transducer has been demonstrated utilizing the TSMC 0.35 μm CMOS technology. As compared to the conventional capacitive-type MEMS resonators, the proposed CMOS-MEMS RGFET features an inherent transconductance gain (gm) offered by the FET transduction capable of enhancing the motional signal of the resonator and relaxing the impedance mismatch issue to its succeeding electronics or 50 Ω-based test facilities. In this work, we design a clamped-clamped beam (CC-beam) resonant-gate structure right above a floating gate FET transducer as a high-Q building block through a maskless post-CMOS process to combine merits from the large capacitive transduction areas of the wide-width beam resonator and the high gain of the underneath FET. An analytical model is also provided to simulate the behavior of the charge-biased RGFET. Thanks to the deep-submicron gap spacing enabled by the post-CMOS polysilicon release process, the proposed resonator under a purely capacitive transduction already attains the motional impedance less than 10 kΩ.
    To further improve the performance of RGFET, the arrayed RGFET is proposed. A CMOS-MEMS arrayed RGFET fabricated by a standard 0.35 μm CMOS-MEMS platform is implemented to enable a Pierce-type oscillator. The proposed arrayed RGFET exhibits low motional impedance of only 5 kΩ and decent power handling capability. With such features, the implemented oscillator shows impressive phase noise of -117 dBc/Hz at the far-from-carrier offset (1 MHz). In this work, we design a clamped-clamped beam (CCB) arrayed resonator utilizing a high-velocity mechanical coupling scheme to serve as the resonant-gate array. To understand the behavior of the proposed arrayed device, an equivalent circuit model consisting of the resonant unit and FET is also provided. To verify the effects of the post-CMOS process on device performance, a conventional MOS ID current measurement is carried out. Finally, a CMOS-MEMS arrayed RGFET oscillator is realized by utilizing a Pierce oscillator architecture, showing decent phase noise performance that benefits from the array design to alleviate the nonlinear effect of the resonant gate.
    In the end, a novel band-to-band tunneling bias scheme is employed for the proposed CMOS-MEMS RGFET without the need of manual switch charging or complicated biasing circuits. With the mechanically coupled array approach and deep submicron gap spacing, the proposed resonator with Q of 1,800 under purely capacitive transduction achieves the record-low motional impedance Rm of 1.1 kΩ among all CMOS-MEMS resonators. By using the FET readout, a CMOS-MEMS arrayed RGFET oscillator is realized through a closed-loop configure uration, demonstrating phase noise performance of -96 dBc/Hz at 1 kHz offset and -122 dBc/Hz at far-from-carrier offset, respectively.

    Abstract i 摘要 iii 致謝 iv Content of Figure viii Content of Table xv Chapter 1 Introduction 1 1.1 MEMS Resonator–Capacitive Type Resonator 1 1.2 Capacitive Resonator through CMOS Technology 5 1.3 Resonant Gate Field Effect Transistor 8 1.4 Thesis Organization 11 Chapter 2 Mechanical and Electrical Modeling of Capacitive MEMS Resonators 13 2.1 Mechanical and Electrical Modeling for the Capacitive Resonator 13 2.2 Capacitive Resonator with Electro-Softening Effect 18 2.3 Nonlinearity of the MEMS Resonators 20 Chapter 3 MEMS Pierce Oscillator 23 3.1 Quartz and MEMS Oscillators 23 3.2 The Pierce Oscillators 28 3.3 Phase Noise of MEMS Resonators 31 Chapter 4 A CMOS-MEMS Resonant Gate Field EFFET Transistor Fabricated by Oxide Wet Etching Post Process 35 4.1 Introduction 35 4.2 RGFET Design 36 4.2.1 Beam Array & FET 36 4.2.2 Pull-in Frame 38 4.3 Fabrication 40 4.4 Experimental Results 43 4.5 Summary 45 Chapter 5 A CMOS-MEMS RGFET Fabricated by Metal Wet Etching Post Process 47 5.1 Introduction 47 5.2 Resonant Gate Field Effect Transistor Design 47 5.2.1 Charge-Biased Transistor Design 49 5.2.2 RGFET Operation and Modeling 52 5.3 Fabrication 56 5.4 Experimental Results 61 5.1 Summary 72 Chapter 6 A CMOS-MEMS Arrayed RGFET 73 6.1 Introduction 73 6.2 Arrayed RGFET Design and Modeling 75 6.2.1 Arrayed RGFET Design 75 6.2.2 rrayed RGFET Oscillator Design 78 6.3 Fabrication 80 6.4 Experimental Results 82 6.4.1 Static Measurement 82 6.4.2 Frequency Response Measurement 84 6.5 Arrayed RGFET Pierce Oscillator 86 6.5.1 Open-loop Configuration 86 6.5.2 Closed-loop Configuration 89 6.6 Discussion 90 6.7 Summary 93 Chapter 7 A CMOS-MEMS Arrayed RGFET Oscillator Using A BAND-TO-BAND Tunneling Bias Scheme 95 7.1 Introduction 95 7.2 Design 96 7.2.1 CMOS MEMS Arrayed RGFET 96 7.2.1 Band-to-band Tunneling Bias Scheme 98 7.3 Experiemental Result 99 7.3.1 Static IV Characteristics of the BTBT Operation 99 7.3.1 Frequency Characteristics of the RGFET 101 7.3.2 Time-elapsed Measurement 103 7.4 RGFET Self-Sustained Oscillator 104 7.4.1 RGFET Oscillator Setup 104 7.4.2 Phase Noise 105 7.4.3 Stability of BTBT RGFET Oscillator 108 7.5 Summary 109 Chapter 8 Conclusions and Future Work 110 8.1 Conclusions 110 8.2 Future work 112 8.2.1 Optimization of CMOS-MEMS RGFET 112 8.2.2 Utilizing a Depletion-mode MOSFET Instead of the Charging Technique 113 Reference 114

    [1] F. Khoshnoud and C. W. de Silva, “Recent advances in MEMS sensor technology - biomedical applications,” IEEE Instrumentation & Measurement Magazine, vol. 15, no. 1. pp. 8-14, Feb. 2012.
    [2] F. Khoshnoud and C. W. de Silva, “Recent advances in MEMS sensor technology - mechanical applications,” IEEE Instrumentation & Measurement Magazine, vol. 15, no. 2, pp. 14-24, Apr. 2012.
    [3] P. Parsons, A. Glendinning, and D. Angelidis, “Resonant sensor for high accuracy pressure measurement using silicon technology,” IEEE Aerosp. Electron. Syst. Mag., vol. 7, no. 7, pp. 45-48, Jul. 1992.
    [4] X. Qiu, R. Tang, J. Zhu, H. Yu, Z. Wang, and J. Oiler, “Lateral field excitation film bulk acoustic resonator as infrared sensor,” Proceedings, 2010 IEEE Sensors Conf., Waikoloa, USA, 01, Nov. 2010, pp. 623-626.
    [5] L. A. Beardslee, J. Lehmann, C. Carron, J. Su, F. Josse, I. Dufour, and O. Brand, “Thermally actuated silicon tuning fork resonators for sensing applications in air,” Proceedings, 25th IEEE Int. Micro Electro Mechanical Systems Conf., Paris, France, Jan. 29-Feb. 2, 2012, pp. 607-610.
    [6] B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-Gel-based integrated optical microring resonator humidity sensor,” IEEE Sensors Journal, vol. 9, no. 7. pp. 740-747, Jul. 2009.
    [7] N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sensors Journal, vol. 1, no. 4. pp. 332-339, Dec. 2001.
    [8] C. T. C. Nguyen, "Integrated Micromechanical Circuits for RF Front Ends," Proceedings, 36th European Solid-State Device Research Conference, ESSDERC, pp. 7-16, 2006
    [9] A. Sharma, F. M. Zaman, B. V. Amini, and F. Ayazi, "A high-Q in-plane SOI tuning fork gyroscope," Proceedings, 2004 IEEE Sensors Conf., vol.1. pp. 467-470
    [10] A. Sharma, M. F. Zaman, and F. Ayazi, “A 0.1 deg/hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1593-1608, May 2009.
    [11] L. Yu-Wei, L. Sheng-Shian, R. Zeying, and C. T. C. Nguyen, "Low phase noise array-composite micromechanical wine-glass disk oscillator," Proceedings, 2005 IEEE International Electron Devices Meeting (IEDM), pp. 4-281.
    [12] J. Verd, G. Abadal, J. Teva, M. V Gaudo, A. Uranga, X. Borrise, F. Campabadal, J. Esteve, E. F. Costa, F. Perez-Murano, Z. J. Davis, E. Forsen, A. Boisen, and N. Barniol, “Design, fabrication, and characterization of a submicroelectromechanical resonator with monolithically integrated CMOS readout circuit,” IEEE/ASME J. Microelectromech. Syst., vol. 14, no. 3. pp. 508-519, Jun. 2005.
    [13] J. T. M. van Beek and R. Puers, “A review of MEMS oscillators for frequency reference and timing applications,” J. Micromech. Microeng., vol. 22, no. 1, pp. 013001, Jan. 2012.
    [14] C. Wen-Chien, F. Weileun, and L. Sheng-Shian, "A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits," J. Micromech. Microeng., vol. 21, p. 065012, May 2011.
    [15] C.-S. Li, L.-J. Hou, and S.-S. Li, “Advanced CMOS-MEMS resonator platform,” IEEE Electron Device Letters, vol. 33, no. 2, pp. 272-274, Feb. 2012.
    [16] W.-C. Chen, W. Fang, and S.-S. Li, “High-Q integrated CMOS-MEMS resonators with deep-submicron gaps and quasi-linear frequency tuning,” IEEE/ASME J. Microelectromech. Syst., vol. 21, no. 3, pp. 688-701, June 2012.
    [17] M.-H. Tsai, Y.-C. Liu, and W. Fang, “A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes,” IEEE/ASME J. Microelectromech. Syst., vol. 21, no. 6, pp. 1329-1337, Jul. 2012.
    [18] M.-H. Li, W.-C. Chen, and S.-S. Li, “Realizing deep-submicron gap spacing for CMOS-MEMS resonators,” IEEE Sensors Journal, vol. 12, no. 12, pp. 3399-3407, Dec. 2012.
    [19] H. C. Nathanson, W. E. Newell, R. A. Wickstrom, and J. R. Davis, Jr., “The resonant gate transistor,” IEEE Trans. on Electron Devices, vol. 14, no. 3, pp. 117-133, Mar. 1967.
    [20] C. Durand, F. Casset, P. Renaux, N. Abele, B. Legrand, D. Renaud, E. Ollier, P. Ancey, A. M. Ionescu, and L. Buchaillot, “In-plane silicon-on-nothing nanometer-scale resonant suspended gate MOSFET for in-IC integration perspectives,” IEEE Electron Device Letters, vol. 29, no. 5, pp. 494-496, May 2008.
    [21] E. Colinet, Cé. Durand, L. Duraffourg, P. Audebert, G. Dumas, F. Casset, E. Ollier, P. Ancey, J.-F. Carpentier, L. Buchaillot, and A. M. Ionescu, “Ultra-sensitive capacitive detection based on SGMOSFET compatible with front-end CMOS process,” IEEE J. of Solid-State Circuits, vol. 44, no. 1, pp. 247-257, Jan. 2009.
    [22] S. T. Bartsch, M. Arp, and A. M. Ionescu, “Junctionless silicon nanowire resonator,” Journal of Electron Device Society, vol. 2, no. 2, pp. 8-15, Dec. 2013.
    [23] S. T. Bartsch, A. Lovera, D. Grogg, and A. M. Ionescu, “Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption,” ACS Nano, vol. 6, no. 1, pp. 256-264, Jan. 2012.
    [24] S.-S. Li, Y.-W. Lin, Z. Ren, and Clark T.-C. Nguyen, “Disk-array design for suppression of unwanted modes in micromechanical composite-array filters,” Proceedings, 19th Int. IEEE Micro Electro Mechanical Systems Conf. (MEMS’06), Istanbul, Turkey, Jan. 22-26, 2006, pp. 866-869.
    [25] H. Wan-Thai and C. T. C. Nguyen, "Stiffness-compensated temperature-insensitive micromechanical resonators," Proceedings, 15th Int. IEEE Micro Electro Mechanical Systems Conf. (MEMS’02), 2002, pp. 731-734.
    [26] S. Lee and C. T.-C. Nguyen, “Mechanically-coupled micromechanical arrays for improved phase noise,” Proc., IEEE UFFC Joint Symposia (UFFC’04), Aug. 2004 pp. 280-286.
    [27] M. Agarwal, K. K. Park, B. Kim, M. A. Hopcroft, S. Chandorkar, R. N. Candler, C. M. Jha, R. Melamud, B. Murrman, and T. W. Kenny, “Amplitude Noise induced Phase Noise in MEMS Resonators,” Solid-State Sensors, Actuators, and Microsystems Workshop, (Hilton Head’06), Hilton Head, SC, USA, pp 90-93, Jun. 2006.
    [28] V. Kaajakari, T. Mattila, A. Oja, and H. Seppä, “Nonlinear limits for singlecrystal silicon microresonators”, J. Microelectromech. Syst., vol. 13, no. 5, pp.715-724, Oct. 2004.
    [29] M.-H. Li, W.-C. Chen, and S.-S. Li, “Mechanically-coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 59, no. 3, pp. 346-357, Mar. 2012.
    [30] V. Kaajakari, T. Mattila, A. Lipsanen, and A. Oja, “Nonlinear mechanical effects in silicon longitudinal mode beam resonators”, Sens. Actuators A: Phys., vol. 120, no. 1, pp. 64-70, Apr. 2005.
    [31] Guillermo Gonzalez, Foundations of Oscillator Circuit Design, 2007 ARTECH HOUSE, INC.
    [32] C. T.-C. Nguyen, “MEMS technology for timing and frequency control,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, no. 2, pp. 251-270, Feb. 2007.
    [33] C. T. C. Nguyen and R. T. Howe, "An integrated CMOS micromechanical resonator high-Q oscillator," IEEE J. Solid-State Circuits, vol. 34, pp. 440-455, 1999.
    [34] B. P. Otis and J. M. Rabaey, "A 300-μW 1.9-GHz CMOS oscillator utilizing micromachined resonators," IEEE J. Solid-State Circuits, vol. 38, pp. 1271-1274, 2003.
    [35] J. J. M. Bontemps, A. Murroni, J. T. M. van Beek, J. A. T. M. van den Homberg, J. J. Koning, G. E. J. Koops, et al., "56 MHZ piezoresistive micromechanical oscillator," Dig. of Tech. Papers, the 11th Int. Conf. on Solid-State Sensors & Actuators (Transducers’09), 2009, pp. 1433-1436.
    [36] SiTime, http://www.sitime.com/
    [37] Y. Jia, C. D. Do, X. Zou, and A. A. Seshia, "A Hybrid Vibration Powered Microelectromechanical Strain Gauge," IEEE Sensors Journal, vol. 16, pp. 235-241, 2016.
    [38] H. Yu, N. Tianxiang, N. X. Sun, and M. Rinaldi, "High Resolution Magnetometer Based on a High Frequency Magnetoelectric MEMS-CMOS Oscillator," J. Microelectromech. Syst. vol. 24, pp. 134-143, 2015.
    [39] W. Zenghui, W. Peng, L. Jaesung, L. Chung-Chiun, and P. X. L. Feng, "Towards real-time methane (CH4) capture and detection by nanoparticle-enhanced silicon carbide trampoline oscillators," Dig. of Tech. Papers, the 17th Int. Conf. on Solid-State Sensors & Actuators (Transducers’15), 2015, pp. 432-435.
    [40] C. Hadji, I. Fukada, F. Baleras, Y. Taguchi, B. Icard, and V. Agache, "Hollow Lame mode MEMS mass sensors with 10 ppb-range stability for particles counting and weighing in fluid," Dig. of Tech. Papers, the 17th Int. Conf. on Solid-State Sensors & Actuators (Transducers’15), 2015, pp. 1121-1124.
    [41] F. D. Bannon, J. R. Clark, and C. T.-C. Nguyen, “High-Q HF microelectromechanical filters,” IEEE J. of Solid-State Circuits, vol. 35, no. 4, pp. 512-526, April 2000.
    [42] A.-M. Ionescu, “Resonant body transistors,” Proceedings, Device Research Conference (DRC), 2010, pp. 181-182.
    [43] S.-S. Li, Y.-W. Lin, Y. Xie, Z. Ren, and C. T.-C. Nguyen, “Charge-biased vibrating micromechanical resonators,” Proceedings, IEEE International Ultrasonics Symposium, Rotterdam, the Netherlands, Sept. 18-21, 2005, 1596-1599.
    [44] G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” IEEE/ASME J. Microelectromech. Syst., vol. 15, no. 6. pp. 1406–1418, Dec. 2006.
    [45] J. Arcamone, M. Savoye, G. Arndt, J. Philippe, C. Marcoux, E. Colinet, L. Duraffourg, T. Magis, M. Laurens, A. Monroy-Aguirre, P. Mazoyer, P. Ancey, P. Robert, and E. Ollier, “VLSI platform for the monolithic integration of single-crystal Si NEMS capacitive resonators with low-cost CMOS,” Proceedings, 2012 IEEE International Electron Devices Meeting (IEDM), 2012, pp. 15.4.1-15.4.4,.
    [46] Y.-C. Liu, M.-H. Tsai, and W. Fang, “Pure oxide structure for temperature stabilization and performance enhancement of CMOS-MEMS accelerometer,” Proceedings, 25th IEEE Int. Micro Electro Mechanical Systems Conf., Paris, France, Jan. 29-Feb. 2, 2012, pp. 591-594.
    [47] D. Guillou, S. Santhanam, and L. Carley, “Laminated, sacrificial-poly MEMS technology in standard CMOS,” Sensors and Actuators A: Physical, vol. 85, no. 1-3, pp. 346-355, Aug. 2000.
    [48] S. R. Chang, C. H. Chang, J. S. Lin, M. S.-C. Lu, Y. T. Lee, S. R. Yeh and H. Chen, “Die-level, post-CMOS processes for fabricating open-gate, field-effect biosensor arrays with on-chip circuitry,” J. Micromech. and Microeng., vol.18, 115032, Oct. 2008.
    [49] K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectronics Journal, vol. 37, no. 6, pp. 519-525, Jun. 2006.
    [50] K. R. Williams and R. S. Muller, “Etch rates for micromachining processing,” IEEE/ASME J. Microelectromech. Syst., vol. 5, no. 4, pp. 256-269, Dec. 1996.
    [51] K. Takeuchi, “Novel co-design of NAND flash memory and NAND flash controller circuits for sub-30 nm low-power high-speed solid-state drives (SSD),” IEEE Journal of Solid-State Circuits, vol. 44, no. 4. pp. 1227-1234, Apr. 2009.
    [52] L.-W. Hung, Z. A. Jacobson, Z. Ren, A. Javey, and C. T.-C. Nguyen, “Capacitive transducer strengthening via ALD-enabled partial-gap filling,” Tech. Digest, 2008 Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head, South Carolina, June 1-5, 2008, pp. 208-211.
    [53] C.-H. Chin, C.-S. Li, M.-H. Li, and S.-S. Li, “A CMOS-MEMS resonant-gate transistor,” Dig. of Tech. Papers, the 17th Int. Conf. on Solid-State Sensors & Actuators (Transducers’13), Barcelona. Spain, June 16-20, 2013, pp. 2284-2287.
    [54] C.-S. Li, M.-H. Li, C.-H. Chin, and S.-S. Li, “Differentially piezoresistive sensing for CMOS-MEMS resonators,” IEEE/ASME J. Microelectromech. Syst., vol. 22, no. 6, pp. 1361-1372, Dec. 2013.
    [55] C.-C. Chen, H.-T. Yu, and S.-S. Li, “A balanced measurement and characterization technique for thermal-piezoresistive micromechanical resonators,” Proceedings, 25th IEEE Int. Micro Electro Mechanical Systems Conf., Paris, France, Jan. 29-Feb. 2, 2012, pp. 377-380.
    [56] J. Verd, A. Uranga, J. Segura, and N. Barniol, “A 3V CMOS-MEMS oscillator in 0.35 µm CMOS technology,” Dig. of Tech. Papers, the 17th Int. Conf. on Solid-State Sensors & Actuators (Transducers’13), Barcelona, Spain, June 16-20, 2013, pp. 806-809.
    [57] W.-C. Chen, W. Fang, and S.-S. Li, “High-Q integrated CMOS-MEMS resonators with deep-submicrometer gaps and quasi-linear frequency tuning,” IEEE/ASME J. Microelectromech. Syst., vol. 21, no. 3. pp. 688-701, June 2012.
    [58] M. U. Demirci and C. T.-C. Nguyen, “Mechanically corner-coupled square microresonator array for reduced series motional resistance,” IEEE/ASME J. Microelectromech. Syst., vol. 15, no. 6, pp. 1419-1436, Dec. 2006.
    [59] Y.-W. Lin, S. Lee, S.-S. Li, Y. Xie, Z. Ren, and C. T.-C. Nguyen, “Series-resonant VHF micromechanical resonator reference oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2477-2491, Dec. 2004.
    [60] E. A. Vittoz, M. G. R. Degrauwe, and S. Bitz, “High-performance crystal oscillator circuits: theory and application,” IEEE J. Solid-State Circuits, vol. 23, no. 3, pp. 774-783, Jun. 1988.
    [61] K. Van Caekenberghe, “Modeling RF MEMS Devices,” IEEE Microwave Magazine, vol. 13, pp. 83-110, Jan. 2012.
    [62] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, and S.-S. Li, “A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator,” IEEE/ASME J. Microelectromech. Syst., vol. 24, no. 2 pp. 360-372, April 2015.
    [63] D. Agrawal and A. Seshia, “An analytical formulation for phase noise in MEMS oscillators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 61, no. 12, pp. 1938-1952, Dec. 2014.
    [64] F. L. Conte, D. Grogg, A. M. Ionescu, and M. Kayal, “High-quality factor MEMS based oscillator,” Proceedings, 16th International Conference in Mixed Design of Integrated Circuits & Systems, Jun. 2009, pp. 276-281.
    [65] V. Petrescu, J. Pettine, D. M. Karabacak, M. Vandecasteele, M. C. Calama, and C. Van Hoof, “Power-efficient readout circuit for miniaturized electronic nose,” Dig. of Tech. Papers, IEEE International Solid-State Circuits Conference, 2012, pp. 318-320.
    [66] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory,” Proceedings of the IEEE, vol. 91, pp. 489-502, 2003.
    [67] Y.-W. Lin, “Low phase noise micromechanical reference oscillators for wireless communication,” Ph.D. Dissertation, University of Michigan, 2004.
    [68] S. Lee and C. T.-C. Nguyen, “Influence of automatic level control on micromechanical resonator oscillator phase noise,” in Proceedings of the 2003 IEEE International Frequency Control Symposium, pp. 341-349.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE