簡易檢索 / 詳目顯示

研究生: 黃士洋
Huang, Shih-Yang
論文名稱: 自動化材料處理系統指派之研究
Research on Assignment of Automated Material Handling System
指導教授: 林東盈
Lin, Dung-Ying
口試委員: 王逸琳
Wang, I-Lin
陳正杰
Chen, Cheng-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 46
中文關鍵詞: 自動化材料系統之指派多元商品最小成本流量問題晶圓搬運拉格朗日鬆弛法容量擴充法
外文關鍵詞: Assignment of automated material handling systems, multi-commodity minimum cost flow problem, wafer handling, Lagrangian relaxation method, capacity scaling method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全自動化晶圓廠需詳細考量規劃組成因素(Fab設計、自動化材料處理系統(automated material handling systems, AMHS))、工具規格和軟體應用程式,工廠製造晶圓過程中,屬於半成品的材料多裝於標準的密封運載工具中,而這些載滿貨物的桶狀工具重量時而高達十公斤,難以採用人為運輸,因此常利用AMHS高空運輸系統,完成晶圓桶在中央主通道、加工裝置站點、儲料器之間的移動過程。當晶圓廠規模日益擴大,AMHS搬運問題也日益複雜。本篇研究旨在探討AMHS指派問題,在晶圓桶起訖點已知的情形下,最有效率地指派AMHS系統,期能最小化完成晶圓桶搬運整體之時間。本篇研究將AMHS系統搬運晶圓之最佳化問題構建為多元商品最小成本流量問題 (multi-commodity minimum cost flow problem, MCMCFP),並據此開發優化演算法以求得最佳解。研究分為兩個部分,首先構建此問題的數學模型,並利用商用軟體求得最佳解以作為演算法之比較基礎。多元商品最小成本流量類型之問題在研究中已被證明為具備NP-complete之複雜度,當數學模型隨著規模漸漸擴大時,預期商用求解軟體遭遇瓶頸,本研究整合拉格朗日鬆弛法(Lagrangian relaxation heuristic)將多元商品最小成本流量問題鬆弛為多個單一商品最小成本流量問題,並利用容量縮放演算法(capacity scaling)做為求解單一商品最小成本流量問題之演算法求解多元商品最小成本流量問題,數值分析發現,本研究開發之演算法能夠在求解軟體求解過程發生瓶頸時,求得AMHS指派問題之最佳解,同時能求解實務規模之問題。


    Fully automated fab should carefully considered the planning components (Fab design, automated material handling systems (AMHS)), tool specifications and software applications. In the process of manufacturing wafers in the factory, most of the semi-finished materials are packed in standard sealed vehicles, and these barrel-shaped tools loaded with goods weigh up to more than ten kilograms. It is difficult to use human transportation, so the AMHS high-altitude transportation system is often used to complete the movement of the semi-finished materials between the central main channel, processing device site, and stocker. As the scale of the factory gradually expanded, AMHS handling problems became more complicated. The purpose of this study is to discuss the AMHS assignment problem. Under the condition where the starting and ending points of the semi-finished materials are known, we hope to assign the AMHS system most efficiently, hoping to minimize the time required to complete the overall wafer handling. In this research, the optimization problem of AMHS system handling wafers is constructed as a multi-commodity minimum cost flow problem (MCMCFP), and an algorithm is developed to find the optimal solution. The research is divided into two parts. First, the mathematical model of this problem is constructed, and the optimal solution is obtained using commercial software as the basis for comparison of the developed algorithm. Multi-commodity minimum cost flow problem has been proved to be NP-complete. When the mathematical model gradually expands, the commercial solution software is expected to encounter difficulties in solving the problem. This study integrates the Lagrangian relaxation heuristic method to relax the multi-commodity minimum cost flow problem into multiple single commodities minimum cost flow problem, and use capacity scaling to solve the single commodities minimum cost flow problem. Numerical analysis found that the algorithm developed in this research could obtain the optimal solution to the AMHS assignment problem when the software encounters difficulties, and can solve the problem of real-world scale at the same time.

    1. 簡介-----1 1.1 研究背景 -----1 1.2 研究動機 -----3 1.3 研究方法與問題描述-----3 2. 文獻回顧 -----7 2.1 自動化材料處理系統之研究(AMHS)-----7 2.2 多元商品最小成本流量問題(MCMCFP)-----10 2.3 容量縮放演算法(Capacity scaling)-----13 2.4 文獻回顧總結-----14 3. 數學模型 -----16 3.1 研究假設 -----16 3.2 問題描述 -----16 3.3 符號 -----17 3.4 建構整數規劃模型 -----18 4. 求解演算法 -----20 4.1 分解原理 -------------20 4.2 時空網路圖 -----22 4.3 容量縮放法 -----25 4.4 整體解決方法之框架-----28 5. 實驗數值與分析---------31 5.1 開發方法之可行性-------31 5.2 自動化材料處理系統運輸過程不同情境之模擬-----37 6. 結論與未來展望-----40 6.1 結論-----40 6.2 未來展望-----40 相關文獻-----42

    洪友芳、高嘉和(2017,7月13日)。台積電先進廠,人機比達1:75。自由時報。
    台積電民國106年度企業社會責任報告書(2015,頁8)。取自https://esg.tsmc.com/download/csr/2018_tsmc_csr/chinese/pdf/c_all.pdf
    Ahuja, R. K., Kodialam, M., Mishra, A. K., & Orlin, J. B. (1997). Computational investigations of maximum flow algorithms. European Journal of Operational Research, 97(3), 509-542. doi: https://doi.org/10.1016/S0377-2217(96)00269-X
    Ahuja, R. K., & Orlin, J. B. (1995). A capacity scaling algorithm for the constrained maximum flow problem. Networks, 25(2), 89-98. doi: https://doi.org/10.1002/net.3230250207
    Araya-Sassi, C., Paredes-Belmar, G., & Gutiérrez-Jarpa, G. (2020). Multi-commodity inventory-location problem with two different review inventory control policies and modular stochastic capacity constraints. Computers & Industrial Engineering, 143, 106410. doi: https://doi.org/10.1016/j.cie.2020.106410
    Bartlett, K., Lee, J., Ahmed, S., Nemhauser, G., Sokol, J., & Na, B. (2014). Congestion-aware dynamic routing in automated material handling systems. Comput. Ind. Eng., 70, 176-182.
    Bevrani, B., Burdett, R., Bhaskar, A., & Yarlagadda, P. K. D. V. (2020). A multi-criteria multi-commodity flow model for analysing transportation networks. Operations Research Perspectives, 7, 100159. doi: https://doi.org/10.1016/j.orp.2020.100159
    Boccia, M., Crainic, T. G., Sforza, A., & Sterle, C. (2018). Multi-commodity location-routing. Comput. Oper. Res., 89(C), 94–112. doi: 10.1016/j.cor.2017.08.013
    Çalışkan, C. (2009). On a capacity scaling algorithm for the constrained maximum flow problem. Networks, 53(3), 229-230. doi: https://doi.org/10.1002/net.20263
    Chung, J. (2015). Estimating arrival times of transportation jobs for automated material handling in LCD fabrication facilities. Journal of Manufacturing Systems, 35, 112-119. doi: https://doi.org/10.1016/j.jmsy.2014.11.017
    Dai, W., Zhang, J., & Sun, X. (2017). On solving multi-commodity flow problems: An experimental evaluation. Chinese Journal of Aeronautics, 30(4), 1481-1492. doi: https://doi.org/10.1016/j.cja.2017.05.012
    Even, S., Itai, A., & Shamir, A. (1975, 13-15 Oct. 1975). On the complexity of time table and multi-commodity flow problems. Paper presented at the 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
    Gao, X., & Cao, C. (2020). Multi-commodity rebalancing and transportation planning considering traffic congestion and uncertainties in disaster response. Computers & Industrial Engineering, 149, 106782. doi: https://doi.org/10.1016/j.cie.2020.106782
    Guimarães, L. R., Athayde Prata, B. d., & de Sousa, J. P. (2020). Models and algorithms for network design in urban freight distribution systems. Transportation Research Procedia, 47, 291-298. doi: https://doi.org/10.1016/j.trpro.2020.03.101
    Hao, Z., Yeh, W.-C., Zuo, M., & Wang, J. (2020). Multi-distribution multi-commodity multistate flow network model and its reliability evaluation algorithm. Reliability Engineering & System Safety, 193, 106668. doi: https://doi.org/10.1016/j.ress.2019.106668
    Hu, W., Mao, J., & Wei, K. (2017). Energy-efficient rail guided vehicle routing for two-sided loading/unloading automated freight handling system. European Journal of Operational Research, 258(3), 943-957. doi: https://doi.org/10.1016/j.ejor.2016.09.001
    Ji, B., Zhang, D., Yu, S. S., & Zhang, B. (2021). Optimally solving the generalized serial-lock scheduling problem from a graph-theory-based multi-commodity network perspective. European Journal of Operational Research, 288(1), 47-62. doi: https://doi.org/10.1016/j.ejor.2020.05.035
    Khayat, G. E., Langevin, A., & Riopel, D. (2006). Integrated production and material handling scheduling using mathematical programming and constraint programming. European Journal of Operational Research, 175(3), 1818-1832. doi: https://doi.org/10.1016/j.ejor.2005.02.077
    Lin, J. T., Wu, C.-H., & Huang, C.-W. (2013). Dynamic vehicle allocation control for automated material handling system in semiconductor manufacturing. Computers & Operations Research, 40(10), 2329-2339. doi: https://doi.org/10.1016/j.cor.2013.04.007
    Mesquita, M., Moz, M., Paias, A., & Pato, M. (2015). A decompose-and-fix heuristic based on multi-commodity flow models for driver rostering with days-off pattern. European Journal of Operational Research, 245(2), 423-437. doi: https://doi.org/10.1016/j.ejor.2015.03.030
    Mohammad Nezhad, A., Manzour, H., & Salhi, S. (2013). Lagrangian relaxation heuristics for the uncapacitated single-source multi-product facility location problem. International Journal of Production Economics, 145(2), 713-723. doi: https://doi.org/10.1016/j.ijpe.2013.06.001
    Mohammadi, M., Dauzère-pérès, S., Yugma, C., & Karimi-Mamaghan, M. (2020). A queue-based aggregation approach for performance evaluation of a production system with an AMHS. Computers & Operations Research, 115, 104838. doi: https://doi.org/10.1016/j.cor.2019.104838
    Moradi, S., Raith, A., & Ehrgott, M. (2015). A bi-objective column generation algorithm for the multi-commodity minimum cost flow problem. European Journal of Operational Research, 244(2), 369-378. doi: https://doi.org/10.1016/j.ejor.2015.01.021
    Rahman, H. F., & Nielsen, I. (2019). Scheduling automated transport vehicles for material distribution systems. Applied Soft Computing, 82, 105552. doi: https://doi.org/10.1016/j.asoc.2019.105552
    Rudi, A., Fröhling, M., Zimmer, K., & Schultmann, F. (2016). Freight transportation planning considering carbon emissions and in-transit holding costs: a capacitated multi-commodity network flow model. EURO Journal on Transportation and Logistics, 5(2), 123-160. doi: https://doi.org/10.1007/s13676-014-0062-4
    Wang, C.-N., Lee, Y.-H., Hsu, H.-P., & Nguyen, D.-H. (2016). The heuristic preemptive dispatching method for convey-based automated material handling system of 450mm wafer fabrication. Computers & Industrial Engineering, 96, 52-60. doi: https://doi.org/10.1016/j.cie.2016.03.017
    Wu, L., Zhang, Z., & Zhang, J. (2019). A Hybrid Vehicle Dispatching Approach for Unified Automated Material Handling System in 300mm Semiconductor Wafer Fabrication System. IEEE Access, 7, 174028-174041. doi: 10.1109/ACCESS.2019.2957184
    Zhong, M., Yang, Y., Dessouky, Y., & Postolache, O. (2020). Multi-AGV scheduling for conflict-free path planning in automated container terminals. Computers & Industrial Engineering, 142, 106371. doi: https://doi.org/10.1016/j.cie.2020.106371
    Zhou, Q., & Zhou, B.-H. (2016). A deadlock recovery strategy for unified automated material handling systems in 300mm wafer fabrications. Computers in Industry, 75, 1-12. doi: https://doi.org/10.1016/j.compind.2015.10.014
    Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows (pp. 296, pp.361 and pp. 649). Upper Saddle River, New Jersey: Prentice Hall.
    300mm fab spending to boom through 2023 with two record highs. (2020, Nov 3). SEMI. Retrived from https://www.semi.org/en/news-media-press/semi-press-releases/300mm-fab-outlook

    QR CODE