簡易檢索 / 詳目顯示

研究生: 張維中
Chang, Wei-Chung
論文名稱: 以無機奈米線疊層結構做為高效能鋰離子電池電極之開發
The Development of Layered Inorganic Nanowires as High-Performance Lithium-Ion Battery Electrodes
指導教授: 段興宇
Tuan, Hsing-Yu
口試委員: 曾院介
Tseng, Yuan-Chieh,
湯學成
Tang, Shiue-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 91
中文關鍵詞: 疊層結構無機奈米線鍺奈米線銅奈米線鋰離子電池電極
外文關鍵詞: Layered structure, Inorganic Nanowires, Ge nanowires, Cu nanowires, Lithium-ion battery, Electrode
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將鍺奈米線與銅奈米線搭配後,製備出無機奈米線疊層結構的鍺/銅奈米線織布。此鍺/銅奈米線織布具有可撓性與彈性,且與FEC/DEC電解液搭配製成鋰電池後,展現出優異的電池的充放電循環性能。譬如,於1 C的充放電速率下進行了1000次循環後,可逆電容量仍高達830 mA h/g。另外在快充放電的表現上,鍺/銅奈米線織布可以在承受20 C充放電速率下,仍有350 mA h/g的電容量表現。另外,在1 C的充電速率充電後,可再以高達50 C的超高速放電速率進行穩定放電。經由計算並與相關文獻比較後,我們發現在計算全部電極的總重量(活性物質+導電劑+黏著劑+集流板)下,鍺/銅奈米線織布電極比其他種類的鍺或矽的電極高出了2~7倍的重量電容量。此方法所製備出的鍺/銅奈米線織布電極具潛力可應用於大電流放電的設備,且可有效減輕電池的重量。此外,我們製備出了大面積的鍺/銅奈米線織布(5 cm * 8 cm),搭配商用化的鎳鈷錳正極製作成軟包式的全電池,可以驅動大量的LED燈,證實了我們所開發出的無機奈米線疊層結構的鍺/銅奈米線織布,除了實驗測試外,也可以做實際的鋰離子電池應用。


    Germanium nanowires and copper nanowires were combined to manufacture germanium/copper nanowire fabrics with a layered inorganic nanowires structure. The fabrics are flexible and resilient. The lithium ion half cells made of the germanium/copper nanowire fabric with an electrolyte composed of FEC/DEC have excellent cycle performance and stability. After 500 cycles at a rate of 1C, the cell exhibited a reversible capacity of 830 mAh/g. The germanium/copper nanowire fabrics also exhibited high rate capacity, having a reversible capacity of 350 mAh/g at a rate of 20 C. In addition, it can allow ultrafast discharge at 50 C when charged at 1C. By calculating the total weight of the electrodes (active materials + conductive agents + binder + current collector) and comparing with the relevant literature, we found that the weight capacities of germanium/copper nanowire fabric electrode were 2~7 times higher than other types of germanium or silicon electrode. The germanium/copper nanowire fabric electrodes have potential for some applications which require rapid cycling rates and can significantly reduce battery weight. Furthermore, We prepared a large area Ge/Cu nanowire fabric anode (5 cm *8 cm) to assemble full cells with commercial Li(NiCoMn)O2 cathode. The full cells were able to power a lot of LEDs. This work demonstrated that our development of layered inorganic nanowires structure make progress toward practical Li-ion battery applications.

    中文摘要 I Abstract II 目錄 IV 表目錄 VII 圖目錄 VII 第一章、鍺、銅奈米線的合成機制與文獻回顧 1 1.1奈米材料簡介 1 1.2鍺奈米線的合成 3 1.2.1氣相法合成鍺奈米線 3 1.2.2常壓液相法合成鍺奈米線 7 1.2.3超臨界流體製備鍺奈米線 9 1.3銅奈米線的合成 11 第二章、鋰離子電池簡介與文獻回顧 13 2.1鋰離子電池 13 2.1.1簡介與發展 13 2.1.2工作原理 18 2.2鋰離子電池的正極材料 20 2.3鋰離子電池的負極材料 23 2.3.1合金材料 24 2.3.2金屬氧化物 25 2.3.3高電容量負極材料所面臨的挑戰 26 2.4鍺奈米負極材料 28 2.5電解液對奈米負極材料的影響 34 2.6如何提升鋰離子電池的能量密度 36 2.6.1鋰離子電池的能量密度 36 2.6.2去除非活性物質的電極之製作 37 2.7研究動機 41 第三章、實驗 42 3.1實驗材料與藥品 42 3.2實驗方法 43 3.2.1金奈米粒子的合成 43 3.2.2鍺奈米線的合成 44 3.2.3修飾鍺奈米線的表面 45 3.2.4銅奈米線的合成 45 3.2.5鍺/銅奈米線織布的製作 46 3.2.6鈕扣型鋰電池的組裝 47 3.2.7軟包鋰電池的組裝 47 3.3實驗分析 48 第四章、結果與討論 49 4.1材料的鑑定與分析 49 4.1.1鍺奈米線的分析 49 4.1.2表面修飾之鍺奈米線的分析 53 4.1.3銅奈米線的分析 55 4.2鍺/銅奈米線織布與其鋰電池的電化學分析 57 4.2.1鍺/銅奈米線織布的分析 57 4.2.2鍺/銅奈米線織布用於鋰電池陽極的電化學分析 61 4.2.2.1奈米線織布的改良 61 4.2.2.2不同電解液體對鍺/銅奈米線織布電池充放電循環的影響 64 4.2.2.3快速充放電與長期循環的測試 69 4.2.3鍺/銅奈米線織布的優勢與相關文獻之比較 71 4.2.4鍺奈米材料商業化搭載量的測試 76 4.2.4.1鍺奈米線產量的放大 76 4.2.4.2鍺奈米線商業化搭載量與鈕扣型全電池的測試 78 4.2.4.3大面積鍺/銅奈米線織布的製作與其軟包電池的測試 79 4.3結論 83 第五章、參考文獻 84

    1. Jun, Y. W.; Choi, J. S.; Cheon, J., Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angewandte Chemie 2006, 45 (21), 3414-39.
    2. Korgel, B. A., Semiconductor nanowires: A chemical engineering perspective. AIChE Journal 2009, 55 (4), 842-848.
    3. Polyakov, B.; Daly, B.; Prikulis, J.; Lisauskas, V.; Vengalis, B.; Morris, M. A.; Holmes, J. D.; Erts, D., High-Density Arrays of Germanium Nanowire Photoresistors. Advanced Materials 2006, 18 (14), 1812-1816.
    4. Wagner, R. S.; Ellis, W. C., Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letters 1964, 4 (5), 89.
    5. Bootsma, G. A.; Gassen, H. J., A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane. Journal of Crystal Growth 1971, 10 (3), 223-234.
    6. James, D. W. F.; Lewis, C., Silicon whisker growth and epitaxy by the vapour-liquid-solid mechanism. British Journal of Applied Physics 1965, 16 (8), 1089.
    7. Gudiksen, M. S.; Lieber, C. M., Diameter-Selective Synthesis of Semiconductor Nanowires. Journal of the American Chemical Society 2000, 122 (36), 8801-8802.
    8. Morales, A. M.; Lieber, C. M., A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 1998, 279 (5348), 208-211.
    9. Westwater, J., Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1997, 15 (3), 554.
    10. Wu, Y.; Yang, P., Direct Observation of Vapor−Liquid−Solid Nanowire Growth. Journal of the American Chemical Society 2001, 123 (13), 3165-3166.
    11. Pei, L. Z.; Cai, Z. Y., A Review on Germanium Nanowires. Recent Patents on Nanotechnology 2012, 6 (1), 44-59.
    12. Wu, Y.; Yang, P., Germanium Nanowire Growth via Simple Vapor Transport. Chemistry of Materials 2000, 12 (3), 605-607.
    13. Kim, B.-S.; Koo, T.-W.; Lee, J.-H.; Kim, D. S.; Jung, Y. C.; Hwang, S. W.; Choi, B. L.; Lee, E. K.; Kim, J. M.; Whang, D., Catalyst-free Growth of Single-Crystal Silicon and Germanium Nanowires. Nano letters 2009, 9 (2), 864-869.
    14. Yang, H.-J.; Tuan, H.-Y., High-yield, high-throughput synthesis of germanium nanowires by metal–organic chemical vapor deposition and their functionalization and applications. Journal of Materials Chemistry 2012, 22 (5), 2215.
    15. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E., Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science 1995, 270 (5243), 1791-1794.
    16. Lu, X.; Fanfair, D. D.; Johnston, K. P.; Korgel, B. A., High Yield Solution−Liquid−Solid Synthesis of Germanium Nanowires. Journal of the American Chemical Society 2005, 127 (45), 15718-15719.
    17. Chockla, A. M.; Korgel, B. A., Seeded germanium nanowire synthesis in solution. Journal of Materials Chemistry 2009, 19 (7), 996-1001.
    18. Reverchon, E.; Adami, R., Nanomaterials and supercritical fluids. The Journal of Supercritical Fluids 2006, 37 (1), 1-22.
    19. Heath, J. R.; LeGoues, F. K., A liquid solution synthesis of single crystal germanium quantum wires. Chemical Physics Letters 1993, 208 (3–4), 263-268.
    20. Hanrath, T.; Korgel, B. A., Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals. Journal of the American Chemical Society 2002, 124 (7), 1424-1429.
    21. Hanrath, T.; Korgel, B. A., Supercritical Fluid–Liquid–Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals. Advanced Materials 2003, 15 (5), 437-440.
    22. Tuan, H.-Y.; Lee, D. C.; Hanrath, T.; Korgel, B. A., Germanium Nanowire Synthesis:  An Example of Solid-Phase Seeded Growth with Nickel Nanocrystals. Chemistry of Materials 2005, 17 (23), 5705-5711.
    23. Lu, X.; Harris, J. T.; Villarreal, J. E.; Chockla, A. M.; Korgel, B. A., Enhanced Nickel-Seeded Synthesis of Germanium Nanowires. Chemistry of Materials 2013, 25 (10), 2172-2177.
    24. Li, N.; Li, X.; Yin, X.; Wang, W.; Qiu, S., Electroless deposition of open-end Cu nanotube arrays. Solid State Communications 2004, 132 (12), 841-844.
    25. Wang, P.-I.; Zhao, Y. P.; Wang, G. C.; Lu, T. M., Novel growth mechanism of single crystalline Cu nanorods by electron beam irradiation. Nanotechnology 2004, 15 (1), 218-222.
    26. Meng, F.; Jin, S., The solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano letters 2012, 12 (1), 234-9.
    27. Ye, E.; Zhang, S. Y.; Liu, S.; Han, M. Y., Disproportionation for growing copper nanowires and their controlled self-assembly facilitated by ligand exchange. Chemistry 2011, 17 (11), 3074-7.
    28. Rathmell, A. R.; Bergin, S. M.; Hua, Y. L.; Li, Z. Y.; Wiley, B. J., The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 2010, 22 (32), 3558-63.
    29. Larcher, D.; Beattie, S.; Morcrette, M.; Edström, K.; Jumas, J.-C.; Tarascon, J.-M., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. Journal of Materials Chemistry 2007, 17 (36), 3759.
    30. Dey, A. N., Electrochemical Alloying of Lithium in Organic Electrolytes. Journal of The Electrochemical Society 1971, 118 (10), 1547-1549.
    31. WHITTINGHAM, M. S., Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126-1127.
    32. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 : A new cathode material for batteries of high energy density. Solid State Ionics 1981, 3–4 (0), 171-174.
    33. Yazami, R.; Touzain, P., A reversible graphite-lithium negative electrode for electrochemical generators. Journal of Power Sources 1983, 9 (3), 365-371.
    34. Yoshino, A., The birth of the lithium-ion battery. Angewandte Chemie 2012, 51 (24), 5798-800.
    35. Fergus, J. W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources 2010, 195 (4), 939-954.
    36. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341.
    37. Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K., Recent development of carbon materials for Li ion batteries. Carbon 2000, 38 (2), 183-197.
    38. Manuel Stephan, A., Review on gel polymer electrolytes for lithium batteries. European Polymer Journal 2006, 42 (1), 21-42.
    39. Ceder, G.; Hautier, G.; Jain, A.; Ong, S. P., Recharging lithium battery research with first-principles methods. MRS Bulletin 2011, 36 (03), 185-191.
    40. Dunn, B.; Kamath, H.; Tarascon, J. M., Electrical energy storage for the grid: a battery of choices. Science 2011, 334 (6058), 928-35.
    41. Kraytsberg, A.; Ein-Eli, Y., Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials 2012, 2 (8), 922-939.
    42. Yang, Y.; McDowell, M. T.; Jackson, A.; Cha, J. J.; Hong, S. S.; Cui, Y., New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano letters 2010, 10 (4), 1486-91.
    43. Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science 2011, 4 (8), 2682.
    44. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Solution-grown germanium nanowire anodes for lithium-ion batteries. ACS applied materials & interfaces 2012, 4 (9), 4658-64.
    45. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J., Li-alloy based anode materials for Li secondary batteries. Chemical Society reviews 2010, 39 (8), 3115-41.
    46. Mao, O.; Turner, R. L.; Courtney, I. A.; Fredericksen, B. D.; Buckett, M. I.; Krause, L. J.; Dahn, J. R., Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries. Electrochemical and Solid-State Letters 1999, 2 (1), 3-5.
    47. Chang, W.-S.; Park, C.-M.; Kim, J.-H.; Kim, Y.-U.; Jeong, G.; Sohn, H.-J., Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy & Environmental Science 2012, 5 (5), 6895.
    48. Deng, J.; Yan, C.; Yang, L.; Baunack, S.; Oswald, S.; Wendrock, H.; Mei, Y.; Schmidt, O. G., Sandwich-Stacked SnO2/Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries. ACS Nano 2013, 7 (8), 6948-6954.
    49. Ko, S.; Lee, J. I.; Yang, H. S.; Park, S.; Jeong, U., Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv Mater 2012, 24 (32), 4451-6.
    50. Seng, K. H.; Park, M. H.; Guo, Z. P.; Liu, H. K.; Cho, J., Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries. Nano letters 2013, 13 (3), 1230-6.
    51. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R., Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews 2013, 113 (7), 5364-5457.
    52. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature nanotechnology 2012, 7 (5), 310-5.
    53. Klavetter, K. C.; Wood, S. M.; Lin, Y.-M.; Snider, J. L.; Davy, N. C.; Chockla, A. M.; Romanovicz, D. K.; Korgel, B. A.; Lee, J.-W.; Heller, A.; Mullins, C. B., A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. Journal of Power Sources 2013, 238, 123-136.
    54. Liang, W.; Yang, H.; Fan, F.; Liu, Y.; Liu, X. H.; Huang, J. Y.; Zhu, T.; Zhang, S., Tough Germanium Nanoparticles under Electrochemical Cycling. ACS Nano 2013, 7 (4), 3427-3433.
    55. Chan, C. K.; Zhang, X. F.; Cui, Y., High Capacity Li Ion Battery Anodes Using Ge Nanowires. Nano letters 2007, 8 (1), 307-309.
    56. Yuan, F.-W.; Yang, H.-J.; Tuan, H.-Y., Alkanethiol-Passivated Ge Nanowires as High-Performance Anode Materials for Lithium-Ion Batteries: The Role of Chemical Surface Functionalization. ACS Nano 2012, 6 (11), 9932-9942.
    57. Kim, H.; Son, Y.; Park, C.; Cho, J.; Choi, H. C., Catalyst-free direct growth of a single to a few layers of graphene on a germanium nanowire for the anode material of a lithium battery. Angewandte Chemie 2013, 52 (23), 5997-6001.
    58. Kennedy, T.; Mullane, E.; Geaney, H.; Osiak, M.; O'Dwyer, C.; Ryan, K. M., High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano letters 2014, 14 (2), 716-23.
    59. Xue, D. J.; Xin, S.; Yan, Y.; Jiang, K. C.; Yin, Y. X.; Guo, Y. G.; Wan, L. J., Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. Journal of the American Chemical Society 2012, 134 (5), 2512-5.
    60. Park, M. H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M.; Cho, J., Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angewandte Chemie 2011, 50 (41), 9647-50.
    61. Yuan, F.-W.; Tuan, H.-Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications. Chemistry of Materials 2014, 26 (6), 2172-2179.
    62. Zhang, S. S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources 2006, 162 (2), 1379-1394.
    63. Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D., Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 2012, 28 (1), 965-76.
    64. Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-76.
    65. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of graphene oxide paper. Nature 2007, 448 (7152), 457-60.
    66. Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T., Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries. The Journal of Physical Chemistry C 2010, 114 (29), 12800-12804.
    67. Luo, S.; Wang, K.; Wang, J.; Jiang, K.; Li, Q.; Fan, S., Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv Mater 2012, 24 (17), 2294-8.
    68. Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A., Silicon nanowire fabric as a lithium ion battery electrode material. Journal of the American Chemical Society 2011, 133 (51), 20914-21.
    69. Choi, J.-Y.; Lee, D. J.; Lee, Y. M.; Lee, Y.-G.; Kim, K. M.; Park, J.-K.; Cho, K. Y., Silicon Nanofibrils on a Flexible Current Collector for Bendable Lithium-Ion Battery Anodes. Advanced Functional Materials 2013, 23 (17), 2108-2114.
    70. Kawamori, M.; Asai, T.; Shirai, Y.; Yagi, S.; Oishi, M.; Ichitsubo, T.; Matsubara, E., Three-dimensional nanoelectrode by metal nanowire nonwoven clothes. Nano letters 2014, 14 (4), 1932-7.
    71. Long, H.; Shi, T.; Jiang, S.; Xi, S.; Chen, R.; Liu, S.; Liao, G.; Tang, Z., Synthesis of a nanowire self-assembled hierarchical ZnCo2O4 shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries. Journal of Materials Chemistry A 2014, 2 (11), 3741.
    72. Zhang, M.; Yan, F.; Tang, X.; Li, Q.; Wang, T.; Cao, G., Flexible CoO–graphene–carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability. Journal of Materials Chemistry A 2014, 2 (16), 5890.
    73. Chockla, A. M.; Panthani, M. G.; Holmberg, V. C.; Hessel, C. M.; Reid, D. K.; Bogart, T. D.; Harris, J. T.; Mullins, C. B.; Korgel, B. A., Electrochemical Lithiation of Graphene-Supported Silicon and Germanium for Rechargeable Batteries. The Journal of Physical Chemistry C 2012, 116 (22), 11917-11923.
    74. Cui, L.-F.; Hu, L.; Choi, J. W.; Cui, Y., Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano 2010, 4 (7), 3671-3678.
    75. Noerochim, L.; Wang, J.-Z.; Chou, S.-L.; Wexler, D.; Liu, H.-K., Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon 2012, 50 (3), 1289-1297.
    76. Liu, J.; Song, K.; van Aken, P. A.; Maier, J.; Yu, Y., Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano letters 2014, 14 (5), 2597-603.
    77. Liu, B.; Wang, X.; Chen, H.; Wang, Z.; Chen, D.; Cheng, Y. B.; Zhou, C.; Shen, G., Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Scientific reports 2013, 3, 1622.
    78. Liu, Y.; Huang, K.; Fan, Y.; Zhang, Q.; Sun, F.; Gao, T.; Wang, Z.; Zhong, J., Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material. Electrochimica Acta 2013, 102, 246-251.
    79. Hanrath, T.; Korgel, B. A., Chemical Surface Passivation of Ge Nanowires. Journal of the American Chemical Society 2004, 126 (47), 15466-15472.
    80. Park, M.-H.; Kim, K.; Kim, J.; Cho, J., Flexible Dimensional Control of High-Capacity Li-Ion-Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies. Advanced Materials 2010, 22 (3), 415-418.
    81. Seng, K. H.; Park, M.-H.; Guo, Z. P.; Liu, H. K.; Cho, J., Self-Assembled Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion Battery. Angewandte Chemie International Edition 2012, 51 (23), 5657-5661.
    82. Bodnarchuk, M. I.; Kravchyk, K. V.; Krumeich, F.; Wang, S.; Kovalenko, M. V., Colloidal Tin–Germanium Nanorods and Their Li-Ion Storage Properties. ACS Nano 2014, 8 (3), 2360-2368.
    83. Ke, F.-S.; Mishra, K.; Jamison, L.; Peng, X.-X.; Ma, S.-G.; Huang, L.; Sun, S.-G.; Zhou, X.-D., Tailoring nanostructures in micrometer size germanium particles to improve their performance as an anode for lithium ion batteries. Chemical Communications 2014, 50 (28), 3713-3715.
    84. Tan, L. P.; Lu, Z.; Tan, H. T.; Zhu, J.; Rui, X.; Yan, Q.; Hng, H. H., Germanium nanowires-based carbon composite as anodes for lithium-ion batteries. Journal of Power Sources 2012, 206 (0), 253-258.
    85. Yao, C.; Wang, J.; Bao, H.; Shi, Y., Facile synthesis of mesoporous Ge/C nanocomposite as anode material for lithium-ion battery. Materials Letters 2014, 124 (0), 73-76.
    86. Seo, M.-H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J., High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy & Environmental Science 2011, 4 (2), 425-428.
    87. Yang, L. C.; Gao, Q. S.; Li, L.; Tang, Y.; Wu, Y. P., Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochemistry Communications 2010, 12 (3), 418-421.
    88. Hwa, Y.; Park, C.-M.; Yoon, S.; Sohn, H.-J., The effect of Cu addition on Ge-based composite anode for Li-ion batteries. Electrochimica Acta 2010, 55 (9), 3324-3329.
    89. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Tin-Seeded Silicon Nanowires for High Capacity Li-Ion Batteries. Chemistry of Materials 2012, 24 (19), 3738-3745.
    90. Lin, Y.-M.; Klavetter, K. C.; Abel, P. R.; Davy, N. C.; Snider, J. L.; Heller, A.; Mullins, C. B., High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chemical Communications 2012, 48 (58), 7268-7270.
    91. Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y., Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. ACS Nano 2010, 4 (3), 1443-1450.
    92. Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y., A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano letters 2012, 12 (6), 3315-3321.
    93. Hwang, T. H.; Lee, Y. M.; Kong, B.-S.; Seo, J.-S.; Choi, J. W., Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes. Nano letters 2011, 12 (2), 802-807.
    94. Liu, N.; Lu, Z.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W.; Cui, Y., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature nanotechnology 2014, 9 (3), 187-92.
    95. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature chemistry 2013, 5 (12), 1042-8.
    96. Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y., Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 2013, 4, 1943.
    97. Liu, N.; Huo, K.; McDowell, M. T.; Zhao, J.; Cui, Y., Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific reports 2013, 3, 1919.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE