研究生: |
張維中 Chang, Wei-Chung |
---|---|
論文名稱: |
以無機奈米線疊層結構做為高效能鋰離子電池電極之開發 The Development of Layered Inorganic Nanowires as High-Performance Lithium-Ion Battery Electrodes |
指導教授: |
段興宇
Tuan, Hsing-Yu |
口試委員: |
曾院介
Tseng, Yuan-Chieh, 湯學成 Tang, Shiue-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 疊層結構 、無機奈米線 、鍺奈米線 、銅奈米線 、鋰離子電池 、電極 |
外文關鍵詞: | Layered structure, Inorganic Nanowires, Ge nanowires, Cu nanowires, Lithium-ion battery, Electrode |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將鍺奈米線與銅奈米線搭配後,製備出無機奈米線疊層結構的鍺/銅奈米線織布。此鍺/銅奈米線織布具有可撓性與彈性,且與FEC/DEC電解液搭配製成鋰電池後,展現出優異的電池的充放電循環性能。譬如,於1 C的充放電速率下進行了1000次循環後,可逆電容量仍高達830 mA h/g。另外在快充放電的表現上,鍺/銅奈米線織布可以在承受20 C充放電速率下,仍有350 mA h/g的電容量表現。另外,在1 C的充電速率充電後,可再以高達50 C的超高速放電速率進行穩定放電。經由計算並與相關文獻比較後,我們發現在計算全部電極的總重量(活性物質+導電劑+黏著劑+集流板)下,鍺/銅奈米線織布電極比其他種類的鍺或矽的電極高出了2~7倍的重量電容量。此方法所製備出的鍺/銅奈米線織布電極具潛力可應用於大電流放電的設備,且可有效減輕電池的重量。此外,我們製備出了大面積的鍺/銅奈米線織布(5 cm * 8 cm),搭配商用化的鎳鈷錳正極製作成軟包式的全電池,可以驅動大量的LED燈,證實了我們所開發出的無機奈米線疊層結構的鍺/銅奈米線織布,除了實驗測試外,也可以做實際的鋰離子電池應用。
Germanium nanowires and copper nanowires were combined to manufacture germanium/copper nanowire fabrics with a layered inorganic nanowires structure. The fabrics are flexible and resilient. The lithium ion half cells made of the germanium/copper nanowire fabric with an electrolyte composed of FEC/DEC have excellent cycle performance and stability. After 500 cycles at a rate of 1C, the cell exhibited a reversible capacity of 830 mAh/g. The germanium/copper nanowire fabrics also exhibited high rate capacity, having a reversible capacity of 350 mAh/g at a rate of 20 C. In addition, it can allow ultrafast discharge at 50 C when charged at 1C. By calculating the total weight of the electrodes (active materials + conductive agents + binder + current collector) and comparing with the relevant literature, we found that the weight capacities of germanium/copper nanowire fabric electrode were 2~7 times higher than other types of germanium or silicon electrode. The germanium/copper nanowire fabric electrodes have potential for some applications which require rapid cycling rates and can significantly reduce battery weight. Furthermore, We prepared a large area Ge/Cu nanowire fabric anode (5 cm *8 cm) to assemble full cells with commercial Li(NiCoMn)O2 cathode. The full cells were able to power a lot of LEDs. This work demonstrated that our development of layered inorganic nanowires structure make progress toward practical Li-ion battery applications.
1. Jun, Y. W.; Choi, J. S.; Cheon, J., Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angewandte Chemie 2006, 45 (21), 3414-39.
2. Korgel, B. A., Semiconductor nanowires: A chemical engineering perspective. AIChE Journal 2009, 55 (4), 842-848.
3. Polyakov, B.; Daly, B.; Prikulis, J.; Lisauskas, V.; Vengalis, B.; Morris, M. A.; Holmes, J. D.; Erts, D., High-Density Arrays of Germanium Nanowire Photoresistors. Advanced Materials 2006, 18 (14), 1812-1816.
4. Wagner, R. S.; Ellis, W. C., Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letters 1964, 4 (5), 89.
5. Bootsma, G. A.; Gassen, H. J., A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane. Journal of Crystal Growth 1971, 10 (3), 223-234.
6. James, D. W. F.; Lewis, C., Silicon whisker growth and epitaxy by the vapour-liquid-solid mechanism. British Journal of Applied Physics 1965, 16 (8), 1089.
7. Gudiksen, M. S.; Lieber, C. M., Diameter-Selective Synthesis of Semiconductor Nanowires. Journal of the American Chemical Society 2000, 122 (36), 8801-8802.
8. Morales, A. M.; Lieber, C. M., A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 1998, 279 (5348), 208-211.
9. Westwater, J., Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1997, 15 (3), 554.
10. Wu, Y.; Yang, P., Direct Observation of Vapor−Liquid−Solid Nanowire Growth. Journal of the American Chemical Society 2001, 123 (13), 3165-3166.
11. Pei, L. Z.; Cai, Z. Y., A Review on Germanium Nanowires. Recent Patents on Nanotechnology 2012, 6 (1), 44-59.
12. Wu, Y.; Yang, P., Germanium Nanowire Growth via Simple Vapor Transport. Chemistry of Materials 2000, 12 (3), 605-607.
13. Kim, B.-S.; Koo, T.-W.; Lee, J.-H.; Kim, D. S.; Jung, Y. C.; Hwang, S. W.; Choi, B. L.; Lee, E. K.; Kim, J. M.; Whang, D., Catalyst-free Growth of Single-Crystal Silicon and Germanium Nanowires. Nano letters 2009, 9 (2), 864-869.
14. Yang, H.-J.; Tuan, H.-Y., High-yield, high-throughput synthesis of germanium nanowires by metal–organic chemical vapor deposition and their functionalization and applications. Journal of Materials Chemistry 2012, 22 (5), 2215.
15. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E., Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science 1995, 270 (5243), 1791-1794.
16. Lu, X.; Fanfair, D. D.; Johnston, K. P.; Korgel, B. A., High Yield Solution−Liquid−Solid Synthesis of Germanium Nanowires. Journal of the American Chemical Society 2005, 127 (45), 15718-15719.
17. Chockla, A. M.; Korgel, B. A., Seeded germanium nanowire synthesis in solution. Journal of Materials Chemistry 2009, 19 (7), 996-1001.
18. Reverchon, E.; Adami, R., Nanomaterials and supercritical fluids. The Journal of Supercritical Fluids 2006, 37 (1), 1-22.
19. Heath, J. R.; LeGoues, F. K., A liquid solution synthesis of single crystal germanium quantum wires. Chemical Physics Letters 1993, 208 (3–4), 263-268.
20. Hanrath, T.; Korgel, B. A., Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals. Journal of the American Chemical Society 2002, 124 (7), 1424-1429.
21. Hanrath, T.; Korgel, B. A., Supercritical Fluid–Liquid–Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals. Advanced Materials 2003, 15 (5), 437-440.
22. Tuan, H.-Y.; Lee, D. C.; Hanrath, T.; Korgel, B. A., Germanium Nanowire Synthesis: An Example of Solid-Phase Seeded Growth with Nickel Nanocrystals. Chemistry of Materials 2005, 17 (23), 5705-5711.
23. Lu, X.; Harris, J. T.; Villarreal, J. E.; Chockla, A. M.; Korgel, B. A., Enhanced Nickel-Seeded Synthesis of Germanium Nanowires. Chemistry of Materials 2013, 25 (10), 2172-2177.
24. Li, N.; Li, X.; Yin, X.; Wang, W.; Qiu, S., Electroless deposition of open-end Cu nanotube arrays. Solid State Communications 2004, 132 (12), 841-844.
25. Wang, P.-I.; Zhao, Y. P.; Wang, G. C.; Lu, T. M., Novel growth mechanism of single crystalline Cu nanorods by electron beam irradiation. Nanotechnology 2004, 15 (1), 218-222.
26. Meng, F.; Jin, S., The solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano letters 2012, 12 (1), 234-9.
27. Ye, E.; Zhang, S. Y.; Liu, S.; Han, M. Y., Disproportionation for growing copper nanowires and their controlled self-assembly facilitated by ligand exchange. Chemistry 2011, 17 (11), 3074-7.
28. Rathmell, A. R.; Bergin, S. M.; Hua, Y. L.; Li, Z. Y.; Wiley, B. J., The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 2010, 22 (32), 3558-63.
29. Larcher, D.; Beattie, S.; Morcrette, M.; Edström, K.; Jumas, J.-C.; Tarascon, J.-M., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. Journal of Materials Chemistry 2007, 17 (36), 3759.
30. Dey, A. N., Electrochemical Alloying of Lithium in Organic Electrolytes. Journal of The Electrochemical Society 1971, 118 (10), 1547-1549.
31. WHITTINGHAM, M. S., Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126-1127.
32. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 : A new cathode material for batteries of high energy density. Solid State Ionics 1981, 3–4 (0), 171-174.
33. Yazami, R.; Touzain, P., A reversible graphite-lithium negative electrode for electrochemical generators. Journal of Power Sources 1983, 9 (3), 365-371.
34. Yoshino, A., The birth of the lithium-ion battery. Angewandte Chemie 2012, 51 (24), 5798-800.
35. Fergus, J. W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources 2010, 195 (4), 939-954.
36. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341.
37. Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K., Recent development of carbon materials for Li ion batteries. Carbon 2000, 38 (2), 183-197.
38. Manuel Stephan, A., Review on gel polymer electrolytes for lithium batteries. European Polymer Journal 2006, 42 (1), 21-42.
39. Ceder, G.; Hautier, G.; Jain, A.; Ong, S. P., Recharging lithium battery research with first-principles methods. MRS Bulletin 2011, 36 (03), 185-191.
40. Dunn, B.; Kamath, H.; Tarascon, J. M., Electrical energy storage for the grid: a battery of choices. Science 2011, 334 (6058), 928-35.
41. Kraytsberg, A.; Ein-Eli, Y., Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials 2012, 2 (8), 922-939.
42. Yang, Y.; McDowell, M. T.; Jackson, A.; Cha, J. J.; Hong, S. S.; Cui, Y., New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano letters 2010, 10 (4), 1486-91.
43. Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science 2011, 4 (8), 2682.
44. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Solution-grown germanium nanowire anodes for lithium-ion batteries. ACS applied materials & interfaces 2012, 4 (9), 4658-64.
45. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J., Li-alloy based anode materials for Li secondary batteries. Chemical Society reviews 2010, 39 (8), 3115-41.
46. Mao, O.; Turner, R. L.; Courtney, I. A.; Fredericksen, B. D.; Buckett, M. I.; Krause, L. J.; Dahn, J. R., Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries. Electrochemical and Solid-State Letters 1999, 2 (1), 3-5.
47. Chang, W.-S.; Park, C.-M.; Kim, J.-H.; Kim, Y.-U.; Jeong, G.; Sohn, H.-J., Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy & Environmental Science 2012, 5 (5), 6895.
48. Deng, J.; Yan, C.; Yang, L.; Baunack, S.; Oswald, S.; Wendrock, H.; Mei, Y.; Schmidt, O. G., Sandwich-Stacked SnO2/Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries. ACS Nano 2013, 7 (8), 6948-6954.
49. Ko, S.; Lee, J. I.; Yang, H. S.; Park, S.; Jeong, U., Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv Mater 2012, 24 (32), 4451-6.
50. Seng, K. H.; Park, M. H.; Guo, Z. P.; Liu, H. K.; Cho, J., Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries. Nano letters 2013, 13 (3), 1230-6.
51. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R., Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews 2013, 113 (7), 5364-5457.
52. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature nanotechnology 2012, 7 (5), 310-5.
53. Klavetter, K. C.; Wood, S. M.; Lin, Y.-M.; Snider, J. L.; Davy, N. C.; Chockla, A. M.; Romanovicz, D. K.; Korgel, B. A.; Lee, J.-W.; Heller, A.; Mullins, C. B., A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. Journal of Power Sources 2013, 238, 123-136.
54. Liang, W.; Yang, H.; Fan, F.; Liu, Y.; Liu, X. H.; Huang, J. Y.; Zhu, T.; Zhang, S., Tough Germanium Nanoparticles under Electrochemical Cycling. ACS Nano 2013, 7 (4), 3427-3433.
55. Chan, C. K.; Zhang, X. F.; Cui, Y., High Capacity Li Ion Battery Anodes Using Ge Nanowires. Nano letters 2007, 8 (1), 307-309.
56. Yuan, F.-W.; Yang, H.-J.; Tuan, H.-Y., Alkanethiol-Passivated Ge Nanowires as High-Performance Anode Materials for Lithium-Ion Batteries: The Role of Chemical Surface Functionalization. ACS Nano 2012, 6 (11), 9932-9942.
57. Kim, H.; Son, Y.; Park, C.; Cho, J.; Choi, H. C., Catalyst-free direct growth of a single to a few layers of graphene on a germanium nanowire for the anode material of a lithium battery. Angewandte Chemie 2013, 52 (23), 5997-6001.
58. Kennedy, T.; Mullane, E.; Geaney, H.; Osiak, M.; O'Dwyer, C.; Ryan, K. M., High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano letters 2014, 14 (2), 716-23.
59. Xue, D. J.; Xin, S.; Yan, Y.; Jiang, K. C.; Yin, Y. X.; Guo, Y. G.; Wan, L. J., Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. Journal of the American Chemical Society 2012, 134 (5), 2512-5.
60. Park, M. H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M.; Cho, J., Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angewandte Chemie 2011, 50 (41), 9647-50.
61. Yuan, F.-W.; Tuan, H.-Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications. Chemistry of Materials 2014, 26 (6), 2172-2179.
62. Zhang, S. S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources 2006, 162 (2), 1379-1394.
63. Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D., Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 2012, 28 (1), 965-76.
64. Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-76.
65. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of graphene oxide paper. Nature 2007, 448 (7152), 457-60.
66. Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T., Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries. The Journal of Physical Chemistry C 2010, 114 (29), 12800-12804.
67. Luo, S.; Wang, K.; Wang, J.; Jiang, K.; Li, Q.; Fan, S., Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv Mater 2012, 24 (17), 2294-8.
68. Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A., Silicon nanowire fabric as a lithium ion battery electrode material. Journal of the American Chemical Society 2011, 133 (51), 20914-21.
69. Choi, J.-Y.; Lee, D. J.; Lee, Y. M.; Lee, Y.-G.; Kim, K. M.; Park, J.-K.; Cho, K. Y., Silicon Nanofibrils on a Flexible Current Collector for Bendable Lithium-Ion Battery Anodes. Advanced Functional Materials 2013, 23 (17), 2108-2114.
70. Kawamori, M.; Asai, T.; Shirai, Y.; Yagi, S.; Oishi, M.; Ichitsubo, T.; Matsubara, E., Three-dimensional nanoelectrode by metal nanowire nonwoven clothes. Nano letters 2014, 14 (4), 1932-7.
71. Long, H.; Shi, T.; Jiang, S.; Xi, S.; Chen, R.; Liu, S.; Liao, G.; Tang, Z., Synthesis of a nanowire self-assembled hierarchical ZnCo2O4 shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries. Journal of Materials Chemistry A 2014, 2 (11), 3741.
72. Zhang, M.; Yan, F.; Tang, X.; Li, Q.; Wang, T.; Cao, G., Flexible CoO–graphene–carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability. Journal of Materials Chemistry A 2014, 2 (16), 5890.
73. Chockla, A. M.; Panthani, M. G.; Holmberg, V. C.; Hessel, C. M.; Reid, D. K.; Bogart, T. D.; Harris, J. T.; Mullins, C. B.; Korgel, B. A., Electrochemical Lithiation of Graphene-Supported Silicon and Germanium for Rechargeable Batteries. The Journal of Physical Chemistry C 2012, 116 (22), 11917-11923.
74. Cui, L.-F.; Hu, L.; Choi, J. W.; Cui, Y., Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano 2010, 4 (7), 3671-3678.
75. Noerochim, L.; Wang, J.-Z.; Chou, S.-L.; Wexler, D.; Liu, H.-K., Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon 2012, 50 (3), 1289-1297.
76. Liu, J.; Song, K.; van Aken, P. A.; Maier, J.; Yu, Y., Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano letters 2014, 14 (5), 2597-603.
77. Liu, B.; Wang, X.; Chen, H.; Wang, Z.; Chen, D.; Cheng, Y. B.; Zhou, C.; Shen, G., Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Scientific reports 2013, 3, 1622.
78. Liu, Y.; Huang, K.; Fan, Y.; Zhang, Q.; Sun, F.; Gao, T.; Wang, Z.; Zhong, J., Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material. Electrochimica Acta 2013, 102, 246-251.
79. Hanrath, T.; Korgel, B. A., Chemical Surface Passivation of Ge Nanowires. Journal of the American Chemical Society 2004, 126 (47), 15466-15472.
80. Park, M.-H.; Kim, K.; Kim, J.; Cho, J., Flexible Dimensional Control of High-Capacity Li-Ion-Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies. Advanced Materials 2010, 22 (3), 415-418.
81. Seng, K. H.; Park, M.-H.; Guo, Z. P.; Liu, H. K.; Cho, J., Self-Assembled Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion Battery. Angewandte Chemie International Edition 2012, 51 (23), 5657-5661.
82. Bodnarchuk, M. I.; Kravchyk, K. V.; Krumeich, F.; Wang, S.; Kovalenko, M. V., Colloidal Tin–Germanium Nanorods and Their Li-Ion Storage Properties. ACS Nano 2014, 8 (3), 2360-2368.
83. Ke, F.-S.; Mishra, K.; Jamison, L.; Peng, X.-X.; Ma, S.-G.; Huang, L.; Sun, S.-G.; Zhou, X.-D., Tailoring nanostructures in micrometer size germanium particles to improve their performance as an anode for lithium ion batteries. Chemical Communications 2014, 50 (28), 3713-3715.
84. Tan, L. P.; Lu, Z.; Tan, H. T.; Zhu, J.; Rui, X.; Yan, Q.; Hng, H. H., Germanium nanowires-based carbon composite as anodes for lithium-ion batteries. Journal of Power Sources 2012, 206 (0), 253-258.
85. Yao, C.; Wang, J.; Bao, H.; Shi, Y., Facile synthesis of mesoporous Ge/C nanocomposite as anode material for lithium-ion battery. Materials Letters 2014, 124 (0), 73-76.
86. Seo, M.-H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J., High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy & Environmental Science 2011, 4 (2), 425-428.
87. Yang, L. C.; Gao, Q. S.; Li, L.; Tang, Y.; Wu, Y. P., Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochemistry Communications 2010, 12 (3), 418-421.
88. Hwa, Y.; Park, C.-M.; Yoon, S.; Sohn, H.-J., The effect of Cu addition on Ge-based composite anode for Li-ion batteries. Electrochimica Acta 2010, 55 (9), 3324-3329.
89. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Tin-Seeded Silicon Nanowires for High Capacity Li-Ion Batteries. Chemistry of Materials 2012, 24 (19), 3738-3745.
90. Lin, Y.-M.; Klavetter, K. C.; Abel, P. R.; Davy, N. C.; Snider, J. L.; Heller, A.; Mullins, C. B., High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chemical Communications 2012, 48 (58), 7268-7270.
91. Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y., Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. ACS Nano 2010, 4 (3), 1443-1450.
92. Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y., A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano letters 2012, 12 (6), 3315-3321.
93. Hwang, T. H.; Lee, Y. M.; Kong, B.-S.; Seo, J.-S.; Choi, J. W., Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes. Nano letters 2011, 12 (2), 802-807.
94. Liu, N.; Lu, Z.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W.; Cui, Y., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature nanotechnology 2014, 9 (3), 187-92.
95. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature chemistry 2013, 5 (12), 1042-8.
96. Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y., Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 2013, 4, 1943.
97. Liu, N.; Huo, K.; McDowell, M. T.; Zhao, J.; Cui, Y., Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific reports 2013, 3, 1919.