簡易檢索 / 詳目顯示

研究生: 黃柏毅
論文名稱: 浮力於微垂直管中推動氣泡之流場研究
指導教授: 李雄略
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 46
中文關鍵詞: 氣泡
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文中提出了一個簡單的壓力落差修正方法,可以有效解決微小氣泡在自由液面兩側所存在的巨大壓力落差問題,使壓力落差的資料可以有效的在氣體跟液體間傳遞,而且由文中可以得知,不論網格的粗細,準確性也相當高,如此一來可以節省許多的計算時間。
    在文中提到,表面張力對壓力場及流場的變化十分巨大,只要自由液面上曲率有了非常細微的改變,就會造成整個流場及壓力場的變動。因此,多數學者在模擬時將微小氣泡簡化為正圓,其實是不恰當的。將來在研究微觀下的氣泡時,應當準確的計算其自由液面曲率的變化,以求得更精確的流場。


    目錄 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3目的 5 第二章 理論分析 6 2.1問題描述 6 2.2建立統御方程式 6 2.3統御方程式的無因次化 .7 2.4氣泡半徑、圓心及壁面位置關係式 10 2.5邊界條件 12 第三章 數值方法 14 3.1動量方程式之差分 15 3.2壓力連結方程式 18 3.3修正自由液面壓力 22 3.4計算流程 24 第四章 結果與討論 25 4.1模擬參數 25 4.2流場與壓力場 26 4.3曲率變化 28 4.4網格測試 29 第五章 結論 31 參考文獻 32 圖表 34

    1. 郭仕奇(Shyh-Chyi Cuo),2000,“流體拉伸式微液體混合器之研發” 國立清華大學工程與系統科學系碩士班, 89NTHU0593043
    2. D.S. Meng and C. J. Kim “Micropumping by Directional Growth and Hydrophobic Venting of Bubbles” Mechanical and Aerospace Engineering Department, University of California, Los Angeles(UCLA), U.S.A
    3. Unverdi, S. O.,1992, and Tryggvason, G.,“A front-tracking method for viscous, incompressible, multi-fluid flows,” Journal of Computational Physics, Vol. 100, pp.25-37.
    4. Hirt, C. W., and Nichols, B. D.,1982,“Volume of fluid (VOF) method for the dynamics of free boundaries,”Journal of Computational Physics, Vol. 39, pp.201
    5. P. Sheng and M. Zhou,1992, “Immiscible-fluid displacement: Contact-line dynamics and the velocity-department capillary pressure” Physical Review A, Vol. 45 pp.5694-5708
    6. S. L. Lee , and S.R. Sheu ,2001,“ A new numerical formulation for incompressible viscous free surface flow without smearing the free surface,”International Journal of Heat and Mass Transfer, Vol.44, pp.1831-184
    7. H. Fan and Y.X. Gao, 2001, “Thermodynamics modeling for moving contact line in gas/liquid/solid system: Capillary rise problem revisited”, Physics of Fluids, Vol13, pp.1615-1623
    8. Krishna, R., Urseanu, M.I., van Baten, J.M., Ellenberger, 1999, “Wall effects on the rise of single gas bubbles in liquids,” Int. Comm. Heat Mass Transfer, Vol. 26, pp. 781-790. , 1999
    9. S. L. Lee, and R.Y. Tzong , 1992, “Artificial pressure for pressure-linked equation,” International Journal of Heat and Mass Transfer, 35, pp. 2705-2716.
    10. Sussman, M., Smereka, P., Osher, S., 1994, “A level set approach for computing solutions to incompressible two-phase flow,” Journal of Computational Physics, 114, pp. 146-159.
    11. Fedkiw, R. P., Aslam, T., Xu, S., 1999, “The ghost fluid method for deflagration and detonation discontinuities,” Journal of Computational Physics, 154, pp.393-427.
    12. Kang, M., Fedkiw, R. P., Liu, X., 2000, “A boundary condition capturing method for multiphase incompressible flow,” Journal of Science Computing, 15, pp.323-360.
    13. Lörstad, D., Francois, M., Shyy, W., Fuchs, L., 2004, “Assessment of Volume of Fluid and immersed boundary methods for droplet calculations,” Int. J. Numerical Methods Fluids, Vol. 46, Issue. 2, pp.109-125.
    14. Ye, T., Shyy, W., Chung, J. N., 2001, “A fixed-grid, sharp-interface method for bubble dynamics and phase change,” Journal of Computational Physics, 174, pp.781- 815.
    15. Takemura, F., Takagi, S., Magnaudet, J., et al., 2002, “Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid,” Journal of Fluid Mech., 461, pp.277-300.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE