簡易檢索 / 詳目顯示

研究生: 梁睿琦
Liang, Jui-Chi
論文名稱: Fair Scheduling in Next-Generation Wireless Communication Networks
於次世代無線通訊網路中公平排程之研究
指導教授: 陳志成
Chen, Jyh-Cheng
許健平
口試委員: 林一平
曾煜棋
許健平
逄愛君
廖婉君
陳志成
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 76
中文關鍵詞: 公平排程OFDMA網路感知無線電網路
外文關鍵詞: Fair Scheduling, OFDMA Networks, Cognitive Radio Networks
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Channel and link scheduling, also referred to as resource allocation, is a fun-
    damental yet important issue of wireless communication networks. The design and
    implementation of scheduling algorithms have great impact on the performance, such
    as throughput, delay, jitter, and fairness, of wireless communication networks. In this
    dissertation, we investigate fair scheduling problems in next-generation wireless com-
    munication networks.
    First, we investigate the proportional fair scheduling in OFDMA relay networks.
    Such network consists of one base station and multiple relay stations that serve as
    MAC-level repeaters. To achieve better system efficiency and throughput, we consider
    frequency diversity, multi-user diversity, and cooperative diversity in the scheduling,
    which must be done in each frame of a duration less than 10 ms. We first formulate
    the problem and prove that it is a NP-hard problem. It is computationally infeasible to
    obtain the optimal solution in real-time. We then propose three greedy-based heuris-
    tic algorithms. The performance of the proposed algorithms is evaluated by extensive
    simulations. We show that although the three algorithms are capable of achieving fairness, they perform differently in system throughput. We explain the reasons be-
    hind the differences and discuss the usefulness of the algorithms in different scenarios.
    The computational complexities of the proposed algorithms are low. They can eas-
    ily meet the requirement of real-time scheduling, which makes them practical for real
    implementation in OFDMA relay networks.
    Cognitive radio has received much attention recently for its ability to improve
    spectrum efficiency by letting secondary users to access spectrum resource that is un-
    occupied by primary users. However, cognitive radio also brings new challenges in the
    design of future wireless networks. We investigate the problem of resource allocation
    in cognitive radio networks. Specifically, we consider the problem of proportional fair
    scheduling in cognitive radio relay networks. Our problem formulation takes into ac-
    count the fluctuations of usable spectrum resource, channel quality variations caused
    by frequency selectivity, and interference caused by different transmit power levels. We
    prove that the problem is NP-hard and is computationally infeasible to be solved in a
    timely manner by using brute force algorithms. An easy-to-compute upper bound for
    the formulated problem is also derived. We propose two heuristic algorithms that are
    easy-to-implement, yet achieve performance close to the upper bound. The proposed
    algorithms can be executed and finished within 1 millisecond. Thus, they can meet the
    requirement of real-time scheduling. Simulation experiments verify that the proposed
    algorithms can achieve good proportional fairness among users and enhance system
    throughput by proper power control.


    無線通訊頻道以及連結的排程 (又稱資源分配 Resource Allocation) 為
    無線通訊網路中最基本同時也最重要之課題。排程演算法的設計及實作方式對於
    系統的效能 (如:吞吐量、延遲、公平性等) 具有相當大的影響。此論文主要探
    討次世代無線通訊網路中公平排程之問題。
    首先,我們先就OFDMA 轉傳網路 (OFDMA Relay Networks) 中比例性公平排
    程 (Proportional Fair Scheduling) 的問題做深入討論。在此種網路架構下,
    系統由一個基地台 (Base Station)、數個MAC 層級轉傳基地台 (Relay Station)
    以及數個使用者 (Mobile Station) 所構成。在執行排程時,我們考量了頻率選
    擇多樣性 (Frequency Diversity)、使用者多樣性 (Multi-user Diversity) 以
    及合作式傳輸多樣性 (Cooperative Diversity) 的影響。我們以數學方式抽象
    描述了此問題,並證明其為NP-Hard。因此,我們無法在有限的時間內取得此問
    題之最佳解。我們提出了三個貪婪式演算法,並以大量的模擬驗證其效能。模擬
    結果指出我們所提出之演算法可有效地達成比例性公平,並在不同的環境中具有
    不同的特性。我們針對各種現象提出解釋,並探討了各演算法適用的環境。我們
    所提出之演算法具有低複雜度,可符合實際OFDMA 轉傳網路中之使用需求。
    近年來,感知無線電技術 (Cognitive Radio) 於受到相當的矚目。感知無
    線電可讓次要使用者 (Secondary User) 利用主要使用者 (Primary User) 未利
    用之頻帶,以提高頻譜的使用率。但感知無線電同時也對未來無線網路的設計架
    構帶來了新的挑戰。此論文在接下來的部分探討了感知無線電網路中比例性公平
    排程資源分配的問題。我們在論文中考慮了剩餘頻寬的變動、頻道品質的差異性
    以及不同傳輸能量所造成的干擾之影響。我們以數學方式抽象此問題,並證明其
    為NP-Hard。因此,我們無法在有限的時間內求得此問題之最佳解。另外,我們
    針對此問題推導出了一個可輕易計算的上限。我們提出了兩個可容易實作且具有
    接近最佳效能之貪婪式演算法。我們所提出之演算法可在1 毫秒的時間內執行完
    畢,相當適合於實際系統中使用。我們同時也使用了大量的模擬實驗,驗證了所
    提出之演算法的效能。實驗結果證實我們的演算法可有效達成比例性公平,並藉
    由傳輸能量的控制提高系統的整體吞吐量。

    Contents Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Diversity-Based Proportional Fair Scheduling for OFDMA Relay (IEEE 802.16j) Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Resource Allocation in Cognitive Radio Relay Networks . . . . . . . . . 4 1.3. Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 7 2. Diversity-Based Proportional Fair Scheduling for OFDMA Relay (IEEE 802.16j) Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1. 802.16j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2. Cooperative Diversity . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3. Proportional Fair Scheduling . . . . . . . . . . . . . . . . . . . . 12 2.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3. System Model and Problem Formulation . . . . . . . . . . . . . . . . . 15 2.3.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4. Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1. Algorithm 1: Inner-Frame Update . . . . . . . . . . . . . . . . . 23 2.4.2. Algorithm 2: k-channel . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.3. Algorithm 3: Super Time-Slot . . . . . . . . . . . . . . . . . . . 27 2.5. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.1. Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.2. Performance Criteria . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.3. Upper Bound of the Proportional Fair Metric . . . . . . . . . . 30 2.5.4. Scheduling under Diverse Channel Conditions . . . . . . . . . . 31 2.5.5. Algorithm Running Time . . . . . . . . . . . . . . . . . . . . . 37 3. Resource Allocation in Cognitive Radio Relay Networks . . . . . . . 38 3.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.1. Cognitive Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.2. Proportional Fair Scheduling . . . . . . . . . . . . . . . . . . . . 39 3.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3. System Model and Notations . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4. Fixed Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.2. Upper Bound for PFSCRN-FTP . . . . . . . . . . . . . . . . . . 49 3.4.3. Proposed Greedy Algorithm for PFSCRN-FTP . . . . . . . . . 52 3.5. Adjustable Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.2. Upper Bound for PFSCRN-FTP . . . . . . . . . . . . . . . . . . 57 3.5.3. Proposed Greedy Algorithm for PFSCRN-ATP . . . . . . . . . 58 3.6. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6.1. Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.6.2. Proportional-Fair Metric . . . . . . . . . . . . . . . . . . . . . . 63 3.6.3. System Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.6.4. Algorithm Running Time . . . . . . . . . . . . . . . . . . . . . 67 4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    Bibliography
    [1] I. Koffman and V. Roman, “Broadband wireless access solutions based on OFDM
    access in IEEE 802.16,” IEEE Commun. Mag., vol. 40, no. 4, pp. 96–103, 2002.
    [2] H. Sampath, S. Talwar, J. Tellado, V. Erceg, and A. Paulraj, “A fourth-generation
    MIMO-OFDM broadband wireless system: design, performance, and field trial
    results,” IEEE Commun. Mag., vol. 40, no. 9, pp. 143–149, 2002.
    [3] “IEEE standard for local and metropolitan area networks; part 16: air interface for
    fixed and mobile broadband wireless access systems multihop relay specification.”
    IEEE P802.16j/D6, July 2008.
    [4] FCC, “Spectrum policy task force report.” ET Docket 02-135, Nov. 2002.
    [5] J. Mitola, Cognitive radio: an integrated agent architecture for software defined
    radio. Doctor of technology, Royal Inst. Technol.(KTH),, Stockholm, Sweden,
    2000.
    [6] S. W. Peters, A. Y. Panah, K. T. Truong, and R. W. Heath, “Relay architectures
    for 3GPP LTE-advanced,” EURASIP J. Wirel. Commun. Netw., vol. 2009, pp. 1–
    14, 2009.
    [7] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control in communication
    networks: shadow prices, proportional fairness and stability,” Journal of the Op-
    erational Research Society, pp. 237–252, Nov. 1998.
    [8] “IEEE standard for local and metropolitan area networks; part 16: air interface
    for fixed broadband wireless access systems.” IEEE 802.16Rev2/D0, Mar. 2007.
    [9] B. Can, H. Yanikomeroglu, F. Onat, E. De Carvalho, and H. Yomo, “Efficient
    cooperative diversity schemes and radio resource allocation for IEEE 802.16j,” in
    Proc. of IEEE Wireless Communications and Networking Conference (WCNC),
    pp. 36–41, March 2008.
    [10] H. Kushner and P. Whiting, “Convergence of proportional-fair sharing algorithms
    under general conditions,” IEEE Trans. Wireless Commun., vol. 3, pp. 1250–1259,
    July 2004.
    [11] C. Y.Wong, R. Cheng, K. Lataief, and R.Murch, “Multiuser OFDMwith adaptive
    subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Commun., vol. 17,
    no. 10, pp. 1747–1758, 1999.
    [12] D. Kivanc, G. Li, and H. Liu, “Computationally efficient bandwidth allocation
    and power control for OFDMA,” IEEE Trans. Wireless Commun., vol. 2, no. 6,
    pp. 1150–1158, 2003.
    [13] M. Ergen, S. Coleri, and P. Varaiya, “QoS aware adaptive resource allocation tech-
    niques for fair scheduling in OFDMA based broadband wireless access systems,”
    IEEE Trans. Broadcast., vol. 49, no. 4, pp. 362–370, 2003.
    [14] W. Rhee and J. Cioffi, “Increase in capacity of multiuser OFDM system using dy-
    namic subchannel allocation,” in Proc. of IEEE 51st VTC 2000-Spring, pp. 1085–
    1089, 2000.
    [15] R. Cohen and L. Katzir, “Computational analysis and efficient algorithms for
    micro and macro OFDMA scheduling,” in Proc. of the 27th IEEE Conference on
    Computer Communications (INFOCOM), pp. 511–519, 2008.
    [16] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing
    systems and scheduling policies for maximum throughput in multihop radio net-
    works,” IEEE Trans. Autom. Control, vol. 37, no. 12, pp. 1936–1948, 1992.
    [17] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel queues
    with randomly varying connectivity,” IEEE Trans. Inf. Theory, vol. 39, no. 2,
    pp. 466–478, 1993.
    [18] M. Andrews and L. Zhang, “Scheduling algorithms for multi-carrier wireless data
    systems,” in Proc. of the 13th Annual ACM International Conference on Mobile
    Computing and Networking (MobiCom), pp. 3–14, 2007.
    [19] O. Oyman, “OFDM2A: A centralized resource allocation policy for cellular multi-
    hop networks,” in Proc. of Fortieth Asilomar Conference on Signals, Systems and
    Computers (ACSSC), pp. 656–660, 2006.
    [20] S. Deb, V. Mhatre, and V. Ramaiyan, “WiMAX relay networks: opportunistic
    scheduling to exploit multiuser diversity and frequency selectivity,” in Proc. of
    the 14th ACM International Conference on Mobile Computing and Networking
    (MobiCom), pp. 163–174, 2008.
    [21] T. Girici, “Joint power, subcarrier and subframe allocation in multihop relay net-
    works,” Int. J. Commun. Syst., vol. 22, no. 7, pp. 835–855, 2009.
    [22] H. Zeng and C. Zhu, “System design and resource allocation in 802.16j multi-hop
    relay systems under the user rate fairness constraint,” in Proc. IEEE Int. Conf.
    Communications ICC ’09, pp. 1–6, 2009.
    [23] M. Kaneko, P. Popovski, and K. Hayashi, “Throughput-guaranteed resource-
    allocation algorithms for relay-aided cellular OFDMA system,” IEEE Trans. Veh.
    Technol., vol. 58, no. 4, pp. 1951–1964, 2009.
    [24] V. Erceg, L. Greenstein, S. Tjandra, S. Parkoff, A. Gupta, B. Kulic, A. Julius,
    and R. Bianchi, “An empirically based path loss model for wireless channels in
    suburban environments,” IEEE J. Sel. Areas Commun., vol. 17, no. 7, pp. 1205–
    1211, 1999.
    [25] W. C. Jakes and D. C. Cox, Microwave Mobile Communications. Wiley-IEEE
    Press, 1994.
    [26] “ns-miracle.” http://www.dei.unipd.it/wdyn/?IDsezione=3966.
    [27] M. A. McHenry, “NSF spectrum occupancy measurements project summary,”
    Aug. 2005.
    [28] M. McHenry, E. Livsics, T. Nguyen, and N. Majumdar, “XG dynamic spectrum
    access field test results [topics in radio communications],” IEEE Commun. Mag.,
    vol. 45, no. 6, pp. 51–57, 2007.
    [29] FCC, “Notice of proposed rule making and order.” ET Docket 03-322, Dec. 2003.
    [30] C. Cordeiro, K. Challapali, D. Birru, and N. Sai Shankar, “IEEE 802.22: the
    first worldwide wireless standard based on cognitive radios,” in Proc. First IEEE
    Int. Symp. New Frontiers in Dynamic Spectrum Access Networks DySPAN 2005,
    pp. 328–337, 2005.
    [31] M. Sherman, A. N. Mody, R. Martinez, C. Rodriguez, and R. Reddy, “IEEE
    standards supporting cognitive radio and networks, dynamic spectrum access, and
    coexistence,” 2008. Communications Magazine, IEEE.
    [32] C. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. Shellhammer, and W. Caldwell,
    “IEEE 802.22: The first cognitive radio wireless regional area network standard,”
    2009. Communications Magazine, IEEE.
    [33] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on spectrum
    management in cognitive radio networks,” IEEE Commun. Mag., vol. 46, no. 4,
    pp. 40–48, 2008.
    [34] S. Haykin, “Cognitive dynamic systems,” Proc. IEEE, vol. 94, no. 11, pp. 1910–
    1911, 2006.
    [35] F. K. Jondral, “Cognitive radio: a communications engineering view,” IEEE Wire-
    less Commun. Mag., vol. 14, no. 4, pp. 28–33, 2007.
    [36] A. N. Mody, S. R. Blatt, D. G. Mills, T. P. McElwain, N. B. Thammakhoune,
    J. D. Niedzwiecki, M. J. Sherman, C. S. Myers, and P. D. Fiore, “Recent advances
    in cognitive communications,” IEEE Commun. Mag., vol. 45, no. 10, pp. 54–61,
    2007.
    [37] B. Le, T. W. Rondeau, and C. W. Bostian, “Cognitive radio realities,” Wireless
    Commun. Mobile Comput., vol. 7, pp. 1037–1048, Nov. 2007.
    [38] J. Miller, “An overview of the US and Japanese approaches to cognitive radio and
    SDR,” IEICE Trans. Commun., vol. E89-B, pp. 3168–3173, Dec. 2006.
    [39] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spec-
    trum sensing for cognitive radios,” in Proc. 38th Asilomar Conf. Sig., Sys. and
    Comp., pp. 772–76., Nov 2004.
    [40] S. M. Mishra, A. Sahai, and R. W. Brodersen, “Cooperative sensing among cogni-
    tive radios,” in Proc. IEEE Int. Conf. Communications ICC ’06, vol. 4, pp. 1658–
    1663, 2006.
    [41] B. Wild and K. Ramchandran, “Detecting primary receivers for cognitive radio
    applications,” in Proc. First IEEE Int. Symp. New Frontiers in Dynamic Spectrum
    Access Networks DySPAN 2005, pp. 124–130, 2005.
    [42] M. Oner and F. Jondral, “On the extraction of the channel allocation informa-
    tion in spectrum pooling systems,” IEEE J. Sel. Areas Commun., vol. 25, no. 3,
    pp. 558–565, 2007.
    [43] S. Krishnamurthy, M. Thoppian, S. Venkatesan, and R. Prakash, “Control chan-
    nel based MAC-layer configuration, routing and situation awareness for cognitive
    radio networks,” in Proc. IEEE Military Communications Conf. MILCOM 2005,
    pp. 455–460, 2005.
    [44] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC for
    opportunistic spectrum access in ad hoc networks: a POMDP framework,” IEEE
    J. Sel. Areas Commun., vol. 25, no. 3, pp. 589–600, 2007.
    [45] J. Jia, Q. Zhang, and X. Shen, “HC-MAC: A hardware-constrained cognitive MAC
    for efficient spectrum management,” IEEE J. Sel. Areas Commun., vol. 26, no. 1,
    pp. 106–117, 2008.
    [46] J. Jia, J. Zhang, and Q. Zhang, “Cooperative relay for cognitive radio networks,”
    in Proc. IEEE INFOCOM 2009, pp. 2304–2312, 2009.
    [47] N. Nie and C. Comaniciu, “Adaptive channel allocation spectrum etiquette for
    cognitive radio networks,” Mob. Netw. Appl., vol. 11, pp. 779–797, December
    2006.
    [48] L. B. Le and E. Hossain, “Resource allocation for spectrum underlay in cognitive
    radio networks,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5306–5315,
    2008.
    [49] A. Attar, O. Holland, M. R. Nakhai, and A. H. Aghvami, “Interference-limited re-
    source allocation for cognitive radio in orthogonal frequency-division multiplexing
    networks,” IET Communications, vol. 2, no. 6, pp. 806–814, 2008.
    [50] T. Qin and C. Cyril Leung, “Fair adaptive resource allocation for multiuser ofdm
    cognitive radio systems,” in Proc. Second Int. Conf. Communications and Net-
    working in China CHINACOM ’07, pp. 115–119, 2007.
    [51] V. Tumuluru, P. Wang, and D. Niyato, “A novel spectrum scheduling scheme for
    multi-channel cognitive radio network and performance analysis,” IEEE Trans.
    Veh. Technol., no. 99, 2011. Early Access.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE