研究生: |
林啟華 Lin, Chi-Hua |
---|---|
論文名稱: |
基於LBP feature使用Bayesian Classifier做性別辨識 Gender Classification Using Bayesian Classifier Based On Local Binary Patch Feature |
指導教授: |
黃仲陵
Huang, Chung-Lin 施皇嘉 Shih, Huang-Chia |
口試委員: |
林信鋒
Lin, Shin-Feng 張意政 Chang, I-Cheng 施皇嘉 Shih, Huang-Chia |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 區域二位元特徵 、貝氏分類器 |
外文關鍵詞: | Local Binary Pattern, Bayesian Classifier |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們使用貝氏估計的架構去針對人臉區塊相似度及由訓練資料所累積的分布來達到對人臉照片做性別辨識的目的。我們的人臉性別辨識主要包含三個程序。在前處理的過程中,我們先對face dataset 使用AAM做位置上的fitting,隨後將fitting完成所對應到的landmark point以30x30 pixels 做patch extraction,並將所對應的patch按順序以對應的路徑做資料存取。我們相信每個AAM抓下來所對應的patch有各自不同的樣本特徵,我們使用Local Binary Patch當作feature去對每一個patch做labels,並且也按順序存在對應的路徑裡。最後我們認為圖像資料庫的組成對於由訓練資料所建立的男性及女性累積分布有密切的關係。我們提出一個以特徵臉與K均值分群法的結合方式,從我們自行收集並分類的男性及女性照片資料庫中選取出具有代表性的男性及女性照片,接著由剩餘的照片視為訓練照片並將其特性根據不同圖像資料庫的數量及組成建立出對應的男性及女性累積分布。我們共訓練了27個獨立的貝氏分類器,每個分類器有不同的分類結果,在實驗結果(a)(b)為我們將訓練的圖片拿去做測試,以檢查訓練的結果具有一定的辨識能力,在實驗結果(c)(d)我們使用其他非訓練的圖片做測試,測試我們的性別分類器的分類能力。
在各自測試完27個分類器的結果後,我們再使用patch weighting的方法,計算出27個patch整體的男女分類率,而不是只有單一個patch的分類率,實驗顯示我們的分類率可以比沒有做weighting的效果更好5%左右。
[1] J. Aghajanian, J. Warrell, S.J.D. Prince, P. Li and J.L. Rohn and B.Baum “Patch-based Within-Object Classification,” IEEE 12th International Conference on Computer Vision, 2009.
[2] Saatci, Y., Town, C., “Cascaded Classification of Gender and Facial
Expression Using Active Appearance Models”. In: Proc. 7th International. Conf. on
Automatic Face and Gesture Recognition (FGR’06), pp. 393–400. April 2006.
[3] E Mäkinen, R Raisamo, “Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces”. IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 541-547, March 2008.
[4] B. Moghaddam, M. H. Yang., “Learning Gender with Support Faces”. IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 707-711, May 2002.
[5] H. C. Lian, B. L. Lu, “Multi-View Gender Classification Using Multi-Resolution Local Binary Patterns and Support Vector Machines” International Journal of Neural Systems, Volume: 17, Issue: 6, pp. 479-487, 2007
[6] B. Xia; H. Sun; B. L. Lu, “Multi-View Gender Classification Based on Local Gabor Binary Mapping Pattern and Support Vector Machines” IEEE International Joint Conference on Neural Networks , pp. 3388 - 3395, 2008.
[7] Y. Fang, Z. Wang “Improving LBP Features For Gender Classification” In: Proc. Of the International Conference On Wavelet Analysis and Pattern Recognition, pp. 373 - 377, August 2008.
[8] Jing Li and Bao-Liang Lu, “A Framework for Multi-view Gender Classification” Neural Information Processing, 2008 - Springer.
[9] Xue-Ming Leng, Yi-Dind Wang, “Gender Classification Based on Fuzzy SVM” In: Proc. Of the 7th International Conference On Machine Learning and Cybernetics, pp. 1260 - 1264, July 2008.
[10] Shumeet Baluja, Henry Rowley, “Boosting Sex Identification Performance ” In International Journal of Computer Vision, vol. 71, no. 1, pp. 111-119, 2007.
[11] Bau-Cheng Shen, Chu-Song Chen, Hui-Huang Hsu. “Fast Gender Recognition by Using a Shared Integral Image Approach” IEEE International Conference on Acoustics, Speech and Signal Processing, 2009.
[12] Zhen-Hua Wang, Zhi-Chun Mu, “Gender Classification Using Selected Independent-Features Based On Genetic Algorithm” In: Proc. Of the 8th International Conference On Machine Learning and Cybernetics, pp. 394- 398, July 2009.
[13] Y Andreu, R Mollineda, “On the Complementarity of Face Parts for Gender Recognition” Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes in Computer Science, Volume 5197, pp. 252-260, 2008.
[14] Li Lu, Ziyi Xu, Pengfei Shi, “Gender Classification of Facial Images Based on Multiple Facial Regions” World Congress on Computer Science and Information Engineering, 2009
[15] Matthew Toews, Tal Arbel. “Detecting, Localizing and Classifying Visual Traits from Arbitrary Viewpoints Using Probabilistic Local Feature Modeling” Analysis and Modeling of Faces and Gestures, 2007 – Springer
[16] Matthew Toews, Tal Arbel. “Detection, Localization, and Sex Classification of Faces from Arbitrary Viewpoints and under Occlusion” IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp. 1567-1581, September 2009.
[17] Zhen Li, Xi Zhou, Huang, T.S., “Spatial Gaussian Mixture Model for Gender Recognition” IEEE International Conference on Image Processing, pp.45-48 , November 2009.
[18] Viola, P., Jones, M., “Rapid object detection using a boosted cascade of simple features” Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 511-518,Deccember 2001
[19] OpenCV library, http://sourceforge.net/projects/opencvlibrary/
[20] Lienhart, R., Maydt, J., “An Extended Set of Haar-like Features for Rapid Object Detection” IEEE International Conference on Image Processing, vol. 1, pp.900-903 , June 2002.
[21] The color FERET database, http://face.nist.gov/colorferet/
[22] R. C. Gonzalez and R. E. woods, Digital Image Processing (Second Edition), Prentice – Hall, 2002.
[23] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification, second edition. Wiley, 2001.
[24] Bishop, C. M., Pattern Recognition And Machine Learning, Springer, 2006.
[25] Turk, M. and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, Vol.3, No.1, pp.71-86, 1991.
[26] Anelia Angelova, Yaser Abu-Mostafa, Pietro Perona, “Pruning Training Sets for Learning of Object Categories” , Proc. IEEE Conference on Computer Vision and Pattern Recognition , 2005.
[27] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller, “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments” University of Massachusetts, Amherst, Technical Report 07-49, October, 2007.
[28] http://www2.imm.dtu.dk/~aam/