研究生: |
林崇耀 Lin, Chung-Yao |
---|---|
論文名稱: |
硫化鉛奈米晶粒添加與殘餘溶劑對有機-鹵素化鉛鈣鈦礦太陽能電池薄膜結晶行為之影響 PbS Nanocrystal and Residual Solvent Effects on Crystallization Behavior of the Organolead Perovskite Thin Film Solar Cells |
指導教授: |
鄭有舜
Jeng, U-ser |
口試委員: |
蘇安仲
Su, An-Chung 莊偉綜 Chuang, Wei-Tsung 李紹先 Li, Shao-Sian 蘇群仁 Su, Chun-Jen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 有機-鹵素化鉛鈣鈦礦 、X光散射 、硫化鉛奈米晶粒 、真空處理 、結構演進 |
外文關鍵詞: | Organolead trihalide perovskite, grazing incidence X-ray scattering, PbS nanocrystals, residual solvent effects, structure and structural kinetics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要使用解析掠角X光散射(In-situ GIXS)及X光繞射(XRD) 研究添加硫化鉛奈米晶粒與真空移除殘餘溶劑兩者分別對以MAI+PbI2(3:1)為前驅物之CH3NH3PbI3-xClx鈣鈦礦薄膜結晶行為與織構(texture)之影響。具MAI前驅物包覆之硫化鉛奈米晶粒,在退火初期可為鈣鈦礦前驅物之異質核加速其形成鈣鈦礦中間相L1; 在退火後期,硫化鉛奈米晶粒因與鈣鈦礦立方晶之晶格參數近似,可再誘導加速中間相進行L1-鈣鈦礦之轉換結晶。由中間相所形成之鈣鈦礦晶體因繼承L1之方向性也具有良好的織構和方向性。透過硫化鉛立方晶體面的誘導排列,硫化鉛奈米晶粒將中間相至鈣鈦礦轉換結晶之活化能自145 kJ/mol 降低至47 kJ/mol,以加速形成鈣鈦礦,進而得到方向性、結晶程度較佳,表面形貌較小孔洞之鈣鈦礦晶體,同時由於硫化鉛奈米晶粒藉由介面聯結效應協助穩定鈣鈦礦晶粒彼此連結,因而也提升了鈣鈦礦薄膜於高溫下之晶體穩定性,避免其衰變演化成碘化鉛晶體之機率。硫化鉛奈米晶粒的添加,使鈣鈦礦結晶程度、方向性、表面形貌,熱穩定性皆等都獲得改善,而得以將光電轉換效率由13.5%提升至15.24%。另外在無添加物的鈣鈦礦前驅物薄膜旋轉塗佈後,透過真空處理8小時移除薄膜中殘餘溶劑,可預先形成部份中間相。預先成形的L1相可於退火開始後即先行轉換為有方向性之鈣鈦礦晶體,整體薄膜晶體在垂直於薄膜面方向上的分佈均勻度及總結晶度也有提昇。變換不同入射角的掠角X光散射結果顯示,預先移除溶劑可避免溶劑被薄膜上層先形成的鈣鈦礦晶體侷限封閉於薄膜底層。透過真空處理,也避免了因溶劑揮發離開表面造成的孔洞而得到較為平滑的薄膜表面形貌。移除旋轉塗佈後薄膜中的殘餘溶劑發現可有效改善鈣鈦礦薄膜之方向性、結晶程度與表面形貌,使光電轉換效率由13.5%提升至15.8%。藉由解析兩種薄膜改質技術,本論文探討了中間相的生成機制及其對薄膜退火結晶行為及薄膜品質的重要影響。透過製程(去除殘餘溶劑)及添加劑(硫化鉛奈米晶粒)可有效調控改變中間相轉換鈣鈦礦路徑之機制、轉換速率、起始時間,而能改善最終薄膜品質及元件效率。
In-situ grazing incident X-ray scattering (GIXS) and X-ray diffraction is used to reveal respectively the PbS nanocrystal and residual solvent effects on the crystallization behavior and film texture of CH3NH3PbI3-xClx perovskite film. Mixing CH3NH3I(MAI)-capped PbS nanocrystals into a perovskite precursor film of MAI:PbCl2 (3:1) is found to accelerate heterogeneous nucleation of L1 intermediate phase at the beginning of annealing, followed by catalyzing the intermediate transformation into perovskite via the heteroepitaxial template conversion in the later stage of annealing. Because of the crystallographic alignment of the cubic lattices of the additive PbS nanocrystals and the perovskite crystals at high temperatures (near 110 C), the activation energy of L1-to-perovskite transition can be reduced from 145 kJ/mol to 47 kJ/mol, leading to accelerated formation of perovskite with better crystal orientation and film texture. Moreover, the stable cubic structure of the PbS nanocrystals help stabilizing the perovskite crystals from decomposing into PbI2 during annealing. The final PbS-nanocrystal-incorporated perovskite film presents higher crystallinity, better crystal orientation, and smoother surface texture, leading to an improved device performance of 15.24% compared to 13.5% of the pristine film. On the other hand, removing the residual solvent of dimethylformamide in a pristine film without additive (via 8 hours in vacuum of 103 torr after spin-coated) leads to substantial formation of the L1 phase prior to annealing. The preformed L1 phase could transform to highly oriented perovskite crystals in the early stage of 110 C annealing, leading to overall improved perovskite crystallinity and film texture. Furthermore, incidence-angle-dependent GIXS reveals enhanced perovskite crystallinity below the film surface, suggesting that removing the residual solvent trapped in the precursor film can facilitate perovskite formation especially below the film surface. Correspondingly, surface pin holes presumably produced from accumulation and evaporation of residual solvent from the film surface during annealing are reduced as revealed by SEM images. The perovskite films with the vacuum treatment before annealing have improved crystallinity, better film texture, and smoother surface film morphology, leading to an elevated device performance of 15.85% from 13.5 % of the reference case. Both MAI-capped PbS nanocrystals and removal of residual solvent demonstrate respectively their significant influences on the formation process of the intermediate phase and the crystallization kinetics of the organolead trihalide perovskite crystals. Both processing routes result in larger and better oriented intermediate phase L1, which then facilitate better L1-to-perovskite transformation for improved film quality and PCE of the perovskite solar cell film.
1. Cheng, Z.; Lin, J., Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 2010, 12 (10), 2646-2662.
2. Kim, Y.-J.; Dang, T.-V.; Choi, H.-J.; Park, B.-J.; Eom, J.-H.; Song, H.-A.; Seol, D.; Kim, Y.; Shin, S.-H.; Nah, J., Piezoelectric properties of CH 3 NH 3 PbI 3 perovskite thin films and their applications in piezoelectric generators. Journal of Materials Chemistry A 2016, 4 (3), 756-763.
3. Bednorz, J. G.; Müller, K. A., Possible highT c superconductivity in the Ba− La− Cu− O system. Zeitschrift für Physik B Condensed Matter 1986, 64 (2), 189-193.
4. Weber, D., CH3NH3SnBrxI3-x (x= 0-3), ein Sn (II)-System mit kubischer Perowskitstruktur/CH3NH3SnBrxI3-x (x= 0-3), a Sn (II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforschung B 1978, 33 (8), 862-865.
5. Lambeck, P.; Jonker, G., The nature of domain stabilization in ferroelectric perovskites. Journal of Physics and Chemistry of Solids 1986, 47 (5), 453-461.
6. Chondroudis, K.; Mitzi, D. B., Electroluminescence from an organic− inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chemistry of materials 1999, 11 (11), 3028-3030.
7. Kagan, C.; Mitzi, D.; Dimitrakopoulos, C., Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 1999, 286 (5441), 945-947.
8. Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J. T., A red metallic oxide photocatalyst. Nature materials 2012, 11 (7), 595.
9. Cui, J.; Yuan, H.; Li, J.; Xu, X.; Shen, Y.; Lin, H.; Wang, M., Recent progress in efficient hybrid lead halide perovskite solar cells. Science and technology of advanced materials 2015, 16 (3), 036004.
10. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
11. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2012, 2.
12. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395.
13. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338 (6107), 643-647.
14. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342 (6156), 341-344.
15. Ponseca Jr, C. S.; Savenije, T. J.; Abdellah, M.; Zheng, K.; Yartsev, A.; Pascher, T. r.; Harlang, T.; Chabera, P.; Pullerits, T.; Stepanov, A., Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. Journal of the American Chemical Society 2014, 136 (14), 5189-5192.
16. Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sanchez, R. S.; Otero, L.; Mora-Sero, I., Recombination study of combined halides (Cl, Br, I) perovskite solar cells. The journal of physical chemistry letters 2014, 5 (10), 1628-1635.
17. Yamada, Y.; Yamada, T.; Phuong, L. Q.; Maruyama, N.; Nishimura, H.; Wakamiya, A.; Murata, Y.; Kanemitsu, Y., Dynamic optical properties of CH3NH3PbI3 single crystals as revealed by one-and two-photon excited photoluminescence measurements. Journal of the American Chemical Society 2015, 137 (33), 10456-10459.
18. Whitfield, P.; Herron, N.; Guise, W.; Page, K.; Cheng, Y.; Milas, I.; Crawford, M., Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Scientific reports 2016, 6, 35685.
19. Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G., MAPbI3-xCl x Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chemistry of Materials 2013, 25 (22), 4613-4618.
20. Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N., The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx” Perovskite. Advanced Functional Materials 2014, 24 (45), 7102-7108.
21. Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C., Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342 (6156), 344-347.
22. Shao, S.; Liu, J.; Portale, G.; Fang, H. H.; Blake, G. R.; ten Brink, G. H.; Koster, L. J. A.; Loi, M. A., Highly Reproducible Sn‐Based Hybrid Perovskite Solar Cells with 9% Efficiency. Advanced Energy Materials 2018, 8 (4), 1702019.
23. Chen, J.; Xu, J.; Xiao, L.; Zhang, B.; Dai, S.; Yao, J., Mixed-Organic-Cation (FA) x (MA) 1–x PbI3 Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process. ACS applied materials & interfaces 2017, 9 (3), 2449-2458.
24. Li, M. H.; Yeh, H. H.; Chiang, Y. H.; Jeng, U. S.; Su, C. J.; Shiu, H. W.; Hsu, Y. J.; Kosugi, N.; Ohigashi, T.; Chen, Y. A., Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low‐Pressure Vapor‐Assisted Solution Process. Advanced Materials 2018, 1801401.
25. Zhao, Y.; Tan, H.; Yuan, H.; Yang, Z.; Fan, J. Z.; Kim, J.; Voznyy, O.; Gong, X.; Quan, L. N.; Tan, C. S., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature communications 2018, 9 (1), 1607.
26. Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N., Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid state communications 2003, 127 (9-10), 619-623.
27. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society 2013, 136 (2), 622-625.
28. Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347 (6221), 522-525.
29. Saliba, M.; Tan, K. W.; Sai, H.; Moore, D. T.; Scott, T.; Zhang, W.; Estroff, L. A.; Wiesner, U.; Snaith, H. J., Influence of thermal processing protocol upon the crystallization and photovoltaic performance of organic–inorganic lead trihalide perovskites. The Journal of Physical Chemistry C 2014, 118 (30), 17171-17177.
30. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J., Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells. Advanced Functional Materials 2014, 24 (1), 151-157.
31. Chang, C.-Y.; Chu, C.-Y.; Huang, Y.-C.; Huang, C.-W.; Chang, S.-Y.; Chen, C.-A.; Chao, C.-Y.; Su, W.-F., Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS applied materials & interfaces 2015, 7 (8), 4955-4961.
32. Pathak, S.; Sepe, A.; Sadhanala, A.; Deschler, F.; Haghighirad, A.; Sakai, N.; Goedel, K. C.; Stranks, S. D.; Noel, N.; Price, M., Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic–inorganic perovskite solar cells. ACS nano 2015, 9 (3), 2311-2320.
33. Dharani, S.; Dewi, H. A.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Yonghua, D.; Mathews, N.; Boix, P. P.; Mhaisalkar, S. G., Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. Nanoscale 2014, 6 (22), 13854-13860.
34. Dong, Q.; Yuan, Y.; Shao, Y.; Fang, Y.; Wang, Q.; Huang, J., Abnormal crystal growth in CH 3 NH 3 PbI 3− x Cl x using a multi-cycle solution coating process. Energy & Environmental Science 2015, 8 (8), 2464-2470.
35. Zhou, Y.; Yang, M.; Vasiliev, A. L.; Garces, H. F.; Zhao, Y.; Wang, D.; Pang, S.; Zhu, K.; Padture, N. P., Growth control of compact CH 3 NH 3 PbI 3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (17), 9249-9256.
36. Liu, D.; Wu, L.; Li, C.; Ren, S.; Zhang, J.; Li, W.; Feng, L., Controlling CH3NH3PbI3–x Cl x Film Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells. ACS applied materials & interfaces 2015, 7 (30), 16330-16337.
37. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials 2014, 13 (9), 897.
38. Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K. Y., Additive enhanced crystallization of solution‐processed perovskite for highly efficient planar‐heterojunction solar cells. Advanced materials 2014, 26 (22), 3748-3754.
39. Ning, Z.; Gong, X.; Comin, R.; Walters, G.; Fan, F.; Voznyy, O.; Yassitepe, E.; Buin, A.; Hoogland, S.; Sargent, E. H., Quantum-dot-in-perovskite solids. Nature 2015, 523 (7560), 324.
40. Li, S.-S.; Chang, C.-H.; Wang, Y.-C.; Lin, C.-W.; Wang, D.-Y.; Lin, J.-C.; Chen, C.-C.; Sheu, H.-S.; Chia, H.-C.; Wu, W.-R., Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles. Energy & Environmental Science 2016, 9 (4), 1282-1289.
41. Xie, F. X.; Zhang, D.; Su, H.; Ren, X.; Wong, K. S.; Grätzel, M.; Choy, W. C., Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS nano 2015, 9 (1), 639-646.
42. Li, X.; Bi, D.; Yi, C.; Décoppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M., A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 2016, 353 (6294), 58-62.
43. Miyadera, T.; Shibata, Y.; Koganezawa, T.; Murakami, T. N.; Sugita, T.; Tanigaki, N.; Chikamatsu, M., Crystallization dynamics of organolead halide perovskite by real-time X-ray diffraction. Nano letters 2015, 15 (8), 5630-5634.
44. Chang, C.-Y.; Huang, Y.-C.; Tsao, C.-S.; Su, W.-F., Formation mechanism and control of perovskite films from solution to crystalline phase studied by in situ synchrotron scattering. ACS applied materials & interfaces 2016, 8 (40), 26712-26721.
45. Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536 (7616), 312.
46. Tan, K. W.; Moore, D. T.; Saliba, M.; Sai, H.; Estroff, L. A.; Hanrath, T.; Snaith, H. J.; Wiesner, U., Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS nano 2014, 8 (5), 4730-4739.
47. Huang, W.; Huang, F.; Gann, E.; Cheng, Y. B.; McNeill, C. R., Probing Molecular and Crystalline Orientation in Solution‐Processed Perovskite Solar Cells. Advanced Functional Materials 2015, 25 (34), 5529-5536.
48. Foley, B. J.; Girard, J.; Sorenson, B. A.; Chen, A. Z.; Niezgoda, J. S.; Alpert, M. R.; Harper, A. F.; Smilgies, D.-M.; Clancy, P.; Saidi, W. A., Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives. Journal of Materials Chemistry A 2017, 5 (1), 113-123.
49. Barrows, A. T.; Lilliu, S.; Pearson, A. J.; Babonneau, D.; Dunbar, A. D.; Lidzey, D. G., Monitoring the Formation of a CH3NH3PbI3–xClx Perovskite during Thermal Annealing Using X‐Ray Scattering. Advanced Functional Materials 2016, 26 (27), 4934-4942.
50. Moore, D. T.; Sai, H.; Tan, K. W.; Smilgies, D.-M.; Zhang, W.; Snaith, H. J.; Wiesner, U.; Estroff, L. A., Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. Journal of the American Chemical Society 2015, 137 (6), 2350-2358.
51. Guo, X.; McCleese, C.; Kolodziej, C.; Samia, A. C.; Zhao, Y.; Burda, C., Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI 3 perovskite. Dalton Transactions 2016, 45 (9), 3806-3813.
52. Tidhar, Y.; Edri, E.; Weissman, H.; Zohar, D.; Hodes, G.; Cahen, D.; Rybtchinski, B.; Kirmayer, S., Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. Journal of the American Chemical Society 2014, 136 (38), 13249-13256.
53. Chia, H.-C.; Sheu, H.-S.; Hsiao, Y.-Y.; Li, S.-S.; Lan, Y.-K.; Lin, C.-Y.; Chang, J.-W.; Kuo, Y.-C.; Chen, C.-H.; Weng, S.-C., Critical Intermediate Structure That Directs the Crystalline Texture and Surface Morphology of Organo-Lead Trihalide Perovskite. ACS applied materials & interfaces 2017, 9 (42), 36897-36906.
54. Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356 (6345), 1376-1379.
55. Masi, M., Quantum Physics An overview of a weird world.
56. G.Yager, K. GISAXS/GIWAXS Data Analysis: Thinking inReciprocal-Space. http://www.amercrystalassn.org/documents/2014%20Meeting/YagerACA_05.pdf (accessed 6/22).
57. Jiang, Z., GIXSGUI: a MATLAB toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films. Journal of Applied Crystallography 2015, 48 (3), 917-926.
58. Hsiao, Y.-Y. The Mechanism of Addition of PbS Nanocrystals to Promote Nucleation of Organic-Inorganic Hybrid Perovskite Solar Cells. National Taiwan University, 2017.
59. Hines, M. A.; Scholes, G. D., Colloidal PbS nanocrystals with size‐tunable near‐infrared emission: observation of post‐synthesis self‐narrowing of the particle size distribution. Advanced Materials 2003, 15 (21), 1844-1849.
60. Ning, Z.; Dong, H.; Zhang, Q.; Voznyy, O.; Sargent, E. H., Solar cells based on inks of n-type colloidal quantum dots. ACS nano 2014, 8 (10), 10321-10327.
61. Wu, W. R.; Su, C. J.; Chuang, W. T.; Huang, Y. C.; Yang, P. W.; Lin, P. C.; Chen, C. Y.; Yang, T. Y.; Su, A. C.; Wei, K. H., Surface Layering: Surface Layering and Supersaturation for Top‐Down Nanostructural Development during Spin Coating of Polymer/Fullerene Thin Films (Adv. Energy Mater. 14/2017). Advanced Energy Materials 2017, 7 (14).
62. Motoki, K.; Miyazawa, Y.; Kobayashi, D.; Ikegami, M.; Miyasaka, T.; Yamamoto, T.; Hirose, K., Degradation of CH3NH3PbI3 perovskite due to soft x-ray irradiation as analyzed by an x-ray photoelectron spectroscopy time-dependent measurement method. Journal of Applied Physics 2017, 121 (8), 085501.
63. Huang, Z.; Bartels, M.; Xu, R.; Osterhoff, M.; Kalbfleisch, S.; Sprung, M.; Suzuki, A.; Takahashi, Y.; Blanton, T. N.; Salditt, T., Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction. Nature materials 2015, 14 (7), 691.
64. Wang, S.; Jiang, Y.; Juarez-Perez, E. J.; Ono, L. K.; Qi, Y., Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nature Energy 2017, 2 (1), 16195.
65. Sadovnikov, S.; Kozhevnikova, N.; Rempel, A., Stability and recrystallization of PbS nanoparticles. Inorganic Materials 2011, 47 (8), 837-843.
66. Nafees, M.; Ikram, M.; Ali, S., Thermal stability of lead sulfide and lead oxide nano-crystalline materials. Applied Nanoscience 2017, 7 (7), 399-406.
67. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic chemistry 2013, 52 (15), 9019-9038.
68. Chen, A. Z.; Shiu, M.; Ma, J. H.; Alpert, M. R.; Zhang, D.; Foley, B. J.; Smilgies, D.-M.; Lee, S.-H.; Choi, J. J., Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nature communications 2018, 9 (1), 1336.