研究生: |
莊治耘 Chuang, Chih Yun |
---|---|
論文名稱: |
大域函數體的L函數的解析理論 Analytic thoery of L-funcitons over funciton fields |
指導教授: |
于靖
Yu, Jing 張介玉 Chang, Chieh-Yu |
口試委員: |
李文卿
Wen-Ching Li 楊一帆 Yi-Fan Yang 潘戍衍 Shu-Yen Pan 夏良忠 Liang-Chung Hsia 馬特, 帕帕尼可拉斯 Matt Papanikolas |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | 德林費爾德自守函數 、大域函數體的虛二次擴張 、大域函數體的維納-池原定理 、志村曲線 |
外文關鍵詞: | Drinfeld type automorphic forms, Imaginary quadratic fields over funciton fields, A Wiener-Ikehara Tauberian Theorem, Shimura curve |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文的主要目的是建立Rankin-type的L-函數的functional equation對於奇特徵值的大域函數體。首先固定一個點叫做無窮遠點,我們考慮虛二次擴張對於這個無線遠點。在有理函數體中考慮某類特別德林費爾德的自守函數和某一種theta函數和某種character在ideal class group上的這種形式的funcitonal equation已經被Ruck and Tipp所證明。而這篇的工作是推廣到大域函數體。另一個部分是得到Wiener-Ikehara Tauberian theorem 對於大域函數體,這通常被用在解析統計上面的問題。我們應用此定理到漸進公式在divisor分布上。特別的是對於固定次方且每個質因式的次方都是偶次並且至多出現一次的多項式,我們有很好的漸進公式。
The main part of this thesis aims at establishing the functional equa-
tion of Rankin L-functions over arbitrary global function fields k with odd
characteristic. Fixing an " infinite" place ∞ of k, we consider an imaginary
quadratic field extension K/k (meaning ∞ does not split in K/k). Func-
tional equation is proved for Rankin L-function formed by an automorphic
cusp forms of Drinfeld type together with a theta function associated with
given ideal class group character of K/k. This work generalizes previous
results obtained by Rück-Tipp (functional equation over the rational func-
tion fields ). We also derive a Wiener-Ikehara Tauberian theorem for global
function fields in the last chapter for use in the analytic problems concerning
arithmetic statistics. Asymptotic formulas for counting positive divisors of
a given function field is investigated. This allows us to get in particular an
asymptotic formula for the proportion of polynomials of a given degree over
a finite field which do not have odd degree irreducible factors.
[1] Daniel Bump, Automorphic forms and representations, Cambridge studies in ad-
vanced math. 55.
[2] Chih-Yun Chuang, Ting-Fung Lee, Fu-Tsun Wei, Jing Yu,Brandt matrices and theta
series over global function fields, to appear in Memoirs of the American Mathematical
Society.
[3] B.H. Gross,Heights and the special valuesof L-series Canadian Math. Society conf.
proceedings Vol. 7, (1987)
[4] B.H. Gross and D.B. Zagier,Heegner points and derivatives of L-series Inverntions
math. 84, (1986) 225-320
[5] Gekeler, E.-U. and Reversat M.,Jacobians of Drinfeld modular curves J. reine angew.
Math. 476, (1996) 27-93
[6] Ting-Fung Lee, On Arithmetic over function fields, PHD Thsis in NTHU, R.O.C.
[7] W, Narkiewicz, Number theory, World Scientific Publishing Co., Singapore 1983.
Translated from the Polish by S. Kanemitsu.
[8] J, Neukirch, Algebraic number theory, Springer.
[9] A. A. Popa, Central values of Rankin L-series over real quadratic fields, Compositio
Math. 142 (2006) 811Ð866
[10] I. Reiner, Maximal orders, London mathematical society monographs new series,
Clearedon press Oxford.
[11] Michael Rosen, number theory in function fields, Gratuate texts in math., Springer
GTM-210.
[12] H.-G. Rück, Theta series of imaginary quadratic function fields , manuscripta math.
88 (1995) 387-407.
[13] H.-G. Rück and U. Tipp, Heegner points and L-series of automorphic cusp forms of
Drinfeld type , Documenta Mathematica 5 (2000) 365-444.
[14] Schweizer, A., Strong Weil curves over Fq (t) with small conductor , J. Number Theory
131 (2011) 285-299.
[15] Wei, F.-T. & Yu, J., Theta series and function field analogue of Gross formula,
Documenta Math. 16 (2011) 723-765.
[16] Wei, F.-T., On the Siegel-Weil formula over function fields submitted
[17] Wei, F.-T., On Rankin triple product L-functions over function fields: central critical
values to appear in Mathematische Zeitschrift.
[18] Wei, F.-T., On arithmetic of curves over function fields PHD Thsis in NTHU, R.O.C.
[19] Weil, A., Dirichlet Series and Automorphic Forms, Lecture notes in mathematics
189, Springer 1971.
[20] J. Wright, Distribution of discriminants of ableian extensions Proc. London Math,
sox. (3) 58 (1989) 17-50.
[21] Xinyi Yuan, Shou-wu Zhang and Wei Zhang, The Gross-Zagier Formula on Shimura
Curves, Annals of Mathematics Studies ISBN: 9781400845644
[22] E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen I, II, Math. Zeit.
19 (1924), 153-246.
[23] G. J. Rieger, Über die Anzahl der als Summe von zwei Quadraten darstellaren und
in einer primen Restklasse gelegenen Zahlen unterhalb einer positiven Schranke. II,
J. reine angew. Math. J. Reine Angew. Math. 217 (1965), 200V216.
[24] M. Rosen, Number theory in function fields, Graduate Texts in Math. 2010, Springer
(2002).
[25] S. S. Gelbart, Weil’s representation and the spectrum of the metaplectic group, Lecture
notes in Math. 530, 1976, Springer.
[26] P. Stevenhangen, The number of real quadratic fields with units of negative norms,
Experiment. Math. 2 (1993), 121-136.
[27] V. G. Drinfeld , Elliptic modules (Russoan), Math. Sbornik 94 (1974), 594-627; Eng-
lish Transl.: Math. USSRSbornik 23 (1976),591-592