簡易檢索 / 詳目顯示

研究生: 莊治耘
Chuang, Chih Yun
論文名稱: 大域函數體的L函數的解析理論
Analytic thoery of L-funcitons over funciton fields
指導教授: 于靖
Yu, Jing
張介玉
Chang, Chieh-Yu
口試委員: 李文卿
Wen-Ching Li
楊一帆
Yi-Fan Yang
潘戍衍
Shu-Yen Pan
夏良忠
Liang-Chung Hsia
馬特, 帕帕尼可拉斯
Matt Papanikolas
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 93
中文關鍵詞: 德林費爾德自守函數大域函數體的虛二次擴張大域函數體的維納-池原定理志村曲線
外文關鍵詞: Drinfeld type automorphic forms, Imaginary quadratic fields over funciton fields, A Wiener-Ikehara Tauberian Theorem, Shimura curve
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文的主要目的是建立Rankin-type的L-函數的functional equation對於奇特徵值的大域函數體。首先固定一個點叫做無窮遠點,我們考慮虛二次擴張對於這個無線遠點。在有理函數體中考慮某類特別德林費爾德的自守函數和某一種theta函數和某種character在ideal class group上的這種形式的funcitonal equation已經被Ruck and Tipp所證明。而這篇的工作是推廣到大域函數體。另一個部分是得到Wiener-Ikehara Tauberian theorem 對於大域函數體,這通常被用在解析統計上面的問題。我們應用此定理到漸進公式在divisor分布上。特別的是對於固定次方且每個質因式的次方都是偶次並且至多出現一次的多項式,我們有很好的漸進公式。


    The main part of this thesis aims at establishing the functional equa-
    tion of Rankin L-functions over arbitrary global function fields k with odd
    characteristic. Fixing an " infinite" place ∞ of k, we consider an imaginary
    quadratic field extension K/k (meaning ∞ does not split in K/k). Func-
    tional equation is proved for Rankin L-function formed by an automorphic
    cusp forms of Drinfeld type together with a theta function associated with
    given ideal class group character of K/k. This work generalizes previous
    results obtained by Rück-Tipp (functional equation over the rational func-
    tion fields ). We also derive a Wiener-Ikehara Tauberian theorem for global
    function fields in the last chapter for use in the analytic problems concerning
    arithmetic statistics. Asymptotic formulas for counting positive divisors of
    a given function field is investigated. This allows us to get in particular an
    asymptotic formula for the proportion of polynomials of a given degree over
    a finite field which do not have odd degree irreducible factors.

    Contents Abstract 3 Acknowledgements 7 Introduction 9 Chapter I. Preliminaries 1 1. Basic settings 1 2. Hilbert symbol 4 3. Imaginary quadratic extensions 5 4. Definite quaternion algebras and Eichler orders 6 5. L-functions for GL1 8 6. Special values of L(1, χK) 13 Chapter II. Theta functions 17 1. Partial zeta functions over global fields 18 2. Weil representation ωK on GL2 20 3. Transformation law of partial theta series 27 4. Fourier coefficients of partial theta functions 31 Chapter III. Drinfeld type automorphic forms 35 1. Weil representation ωD and theta functions 35 2. Automorphic forms of Drinfeld type 37 3. Hecke operators 41 4. Whittaker functions 44 5. Definite Shimura curves and the Gross points 45 6. Hecke correspondence and the Gross height pairing 47 7. The Hecke module structures 50 56 CONTENTS Chapter IV. Rankin product 53 1. L- series L(F, η, s) 54 2. Zeta integral and Eisenstein series 57 3. Intertwining operators 69 Chapter V. Central critical values of L(F, η, s) 77 1. Siegel-Eisenstein series 79 2. Connecting with Drinfeld type automorphic forms 86 3. Level computations and central critical value of L(F, η, s) 94 4. A global function field analogue of Gross formula 100 5. Example 102 Chapter VI. A Wiener-Ikehara Tauberian Theorem and its applications107 1. A function field version of Wiener-Ikehara Tauberian Theorem 107 2. Counting divisors over finite fields 115 Bibliography 119 Symbols 121

    [1] Daniel Bump, Automorphic forms and representations, Cambridge studies in ad-
    vanced math. 55.
    [2] Chih-Yun Chuang, Ting-Fung Lee, Fu-Tsun Wei, Jing Yu,Brandt matrices and theta
    series over global function fields, to appear in Memoirs of the American Mathematical
    Society.
    [3] B.H. Gross,Heights and the special valuesof L-series Canadian Math. Society conf.
    proceedings Vol. 7, (1987)
    [4] B.H. Gross and D.B. Zagier,Heegner points and derivatives of L-series Inverntions
    math. 84, (1986) 225-320
    [5] Gekeler, E.-U. and Reversat M.,Jacobians of Drinfeld modular curves J. reine angew.
    Math. 476, (1996) 27-93
    [6] Ting-Fung Lee, On Arithmetic over function fields, PHD Thsis in NTHU, R.O.C.
    [7] W, Narkiewicz, Number theory, World Scientific Publishing Co., Singapore 1983.
    Translated from the Polish by S. Kanemitsu.
    [8] J, Neukirch, Algebraic number theory, Springer.
    [9] A. A. Popa, Central values of Rankin L-series over real quadratic fields, Compositio
    Math. 142 (2006) 811Ð866
    [10] I. Reiner, Maximal orders, London mathematical society monographs new series,
    Clearedon press Oxford.
    [11] Michael Rosen, number theory in function fields, Gratuate texts in math., Springer
    GTM-210.
    [12] H.-G. Rück, Theta series of imaginary quadratic function fields , manuscripta math.
    88 (1995) 387-407.
    [13] H.-G. Rück and U. Tipp, Heegner points and L-series of automorphic cusp forms of
    Drinfeld type , Documenta Mathematica 5 (2000) 365-444.
    [14] Schweizer, A., Strong Weil curves over Fq (t) with small conductor , J. Number Theory
    131 (2011) 285-299.
    [15] Wei, F.-T. & Yu, J., Theta series and function field analogue of Gross formula,
    Documenta Math. 16 (2011) 723-765.
    [16] Wei, F.-T., On the Siegel-Weil formula over function fields submitted
    [17] Wei, F.-T., On Rankin triple product L-functions over function fields: central critical
    values to appear in Mathematische Zeitschrift.
    [18] Wei, F.-T., On arithmetic of curves over function fields PHD Thsis in NTHU, R.O.C.
    [19] Weil, A., Dirichlet Series and Automorphic Forms, Lecture notes in mathematics
    189, Springer 1971.
    [20] J. Wright, Distribution of discriminants of ableian extensions Proc. London Math,
    sox. (3) 58 (1989) 17-50.
    [21] Xinyi Yuan, Shou-wu Zhang and Wei Zhang, The Gross-Zagier Formula on Shimura
    Curves, Annals of Mathematics Studies ISBN: 9781400845644
    [22] E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen I, II, Math. Zeit.
    19 (1924), 153-246.
    [23] G. J. Rieger, Über die Anzahl der als Summe von zwei Quadraten darstellaren und
    in einer primen Restklasse gelegenen Zahlen unterhalb einer positiven Schranke. II,
    J. reine angew. Math. J. Reine Angew. Math. 217 (1965), 200V216.
    [24] M. Rosen, Number theory in function fields, Graduate Texts in Math. 2010, Springer
    (2002).
    [25] S. S. Gelbart, Weil’s representation and the spectrum of the metaplectic group, Lecture
    notes in Math. 530, 1976, Springer.
    [26] P. Stevenhangen, The number of real quadratic fields with units of negative norms,
    Experiment. Math. 2 (1993), 121-136.
    [27] V. G. Drinfeld , Elliptic modules (Russoan), Math. Sbornik 94 (1974), 594-627; Eng-
    lish Transl.: Math. USSRSbornik 23 (1976),591-592

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE