研究生: |
陳姿妙 Chen, Tzu Miao |
---|---|
論文名稱: |
光刺激發光劑量計之能量依存性修正方法研究 Modification method of the energy dependence of optically stimulated luminescent dosimeter |
指導教授: |
許靖涵
Hsu, Ching Han 許芳裕 Hsu, Fang Yun |
口試委員: |
趙自強
Chao, Tsi Chian 游澄清 Yu,Cheng Ching |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 光刺激發光劑量計 、熱發光劑量計 、能量依存性 |
外文關鍵詞: | OSLD, TLD, Energy dependence |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光刺激發光劑量計(OSLD)因高靈敏度、可重複計讀等優點,近些年已普遍被使用在研究或臨床上的劑量量測,但有著能量依存性的缺點,對低能量之光子有較高劑量響應而造成劑量高估。本研究使用OSLD與熱發光劑量計(TLD)以100 kV、120 kV、6 MV三種光子能量,分別量測探討在不同深度下,照野內與照野外之劑量響應並計算無濾片及有濾片之OSLD劑量響應比值(ROSLD1/ROSLD2),再搭配蒙地卡羅方法模擬不同能量下的比值結果,推得有效能量與相關之修正因子後進行修正,以減少劑量誤差。結果顯示,在高能量6 MV光子照射下,OSLD能量依存性較小,修正後OSLD與TLD之誤差約為-20.26 %~27.46 %,低能量100 kV、120 kV光子照射下,OSLD能量依存性明顯,經修正後與TLD之誤差約為-15.58 %~25.47 %,本研究所建立之修正方法能適度降低能量依存性所造成OSLD的劑量誤差。
Optically simulated luminescent dosimeters (OSLDs) have been commonly used in research or clinical dose measurements due to their high sensitivity and can be read out multiple times. However, they have energy dependence, and they exhibit an over-response to low energy photons to misestimate the dose.
This study used OSLDs and thermoluminescent dosimeters (TLDs) irradiating with three photon energy (100 kV, 120 kV,6 MV) to measure the doses at in-field and out-of-field locations in different depth. Moreover, we calculated the dose response ratio (ROSLD1/ROSLD2) from measurement and used Monte Carlo methods to simulate the ratio of with and without filters in different energies. Effective energy and the correction factor would be decided to reduce the error.
The results show that OSLD have less energy dependence in the 6 MV high-energy photon irradiation. The dose errors after the verification compared to TLD are ranged from -20.26 %~27.46 %. In the low-energy photon irradiation (100 kV and 120 kV), OSLD showed energy dependence seriously and the dose errors compared to TLD are range from 66.67 % to 175 % before modification and 15.58 % to 25.47 % after modification. In this study we established a method to reduce the dose errors of OSLD caused by the energy dependence, by means of the modification, errors due to energy dependence can be reduced effectively.
1. Olko, P., Advantages and disadvantages of luminescence dosimetry. Radiation Measurements, 2010. 45(3-6): p. 506-511.
2. Mobit, P., Agyingi, E., and Sandison, G., Comparison of the energy-response factor of LiF and Al2O3 in radiotherapy beams. Radiat Prot Dosimetry, 2006. 119(1-4): p. 497-499.
3. Al-Senan, R.M. and Hatab, M.R., Characteristics of an OSLD in the diagnostic energy range. Medical Physics, 2011. 38(7): p. 4396-4405.
4. Nunn, A.A., Davis, S.D., Micka, J.A., et al., LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20–250 kVp relative to 60Co. Medical Physics, 2008. 35(5): p. 1859-1869.
5. Bordy, J.M., Bessieres, I., d'Agostino, E., et al., Radiotherapy out-of-field dosimetry: Experimental and computational results for photons in a water tank. Radiation Measurements, 2013. 57: p. 29-34.
6. Scarboro, S.B., Followill, D.S., Howell, R.M., et al., Variations in photon energy spectra of a 6 MV beam and their impact on TLD response. Medical Physics, 2011. 38(5): p. 2619-2628.
7. Scarboro, S.B., Followill, D.S., Kerns, J.R., et al., Energy response of optically stimulated luminescent dosimeters for non-reference measurement locations in a 6 MV photon beam. Phys Med Biol, 2012. 57(9): p. 2505-2515.
8. http://solutions.landauer.com/images/site/microstar/documents/
patmon_nanoDot_FN.pdf
9. Jursinic, P.A., Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Medical Physics, 2007. 34(12): p. 4594-4604.
10. Mostaar, M.A., Allahverdi, M. , Shahriari.Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom .Iran. J. Radiat. Res., 2003; 1(3): p.143-149.
11. Reniers, B., Verhaegen, F., and Vynckier, S., The radial dose function of low-energy brachytherapy seeds in different solid phantoms: comparison between calculations with the EGSnrc and MCNP4C Monte Carlo codes and measurements. Phys Med Biol, 2004. 49(8): p. 1569-1582.
12. Hill, R., Kuncic, Z., and Baldock, C., The water equivalence of solid phantoms for low energy photon beams. Medical Physics, 2010. 37(8): p. 4355-4363.
13. Reft, C.S., The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams. Medical Physics, 2009. 36(5): p. 1690-1699.
14. Kerns, J.R., Kry, S.F., Sahoo, N., et al., Angular dependence of the nanoDot OSL dosimeter. Medical Physics, 2011. 38(7): p. 3955-3962.
15. Lehmann, J., Dunn, L., Lye, J.E., et al., Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams. Med Phys, 2014. 41(6): p. 061712-1-061712-9.
16. 蔡榮鍠,翁寶山,最新放射物理學 附錄,國興出版社,1984: p.672.