研究生: |
謝佳旻 Hsieh, Chia-Min. |
---|---|
論文名稱: |
設計與合成深藍與橘紅延遲螢光客體材料及與有機發光二極體元件之應用 Design and Synthesis of Deep-blue and Orange-Red Delayed Fluorescent Dopants and Their Applications in OLEDs |
指導教授: |
鄭建鴻
Cheng, Chien-Hong |
口試委員: |
洪文誼
Hung, Wen-Yi 周鶴修 Chou, Ho-Hsiu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 330 |
中文關鍵詞: | 有機發光二極體 、三重態-三重態淬熄 、熱活化延遲螢光 、延遲螢光 、磁場效應 |
外文關鍵詞: | OLEDs, Triplet-triplet Annihilation, TADF, Delayed Fluorescence, Magnetic Field Effect |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文,我們首先藉由引入高量子產率之蒽基與二苯乙烯基,再加上不同的推拉電子基團以調整HOMO與LUMO能階高低,成功設計並合成一系列深藍色螢光客體材料PSADPA、PSACz、PSAPCz、PSAN、PSAN2、PSAPy、PSACN與PSASO。也根據PESA的量測與理論計算結果,可以發現改變取代基團可以微幅調變分子之光物理性質,如HOMO與LUMO能階,以及放光光色。除此之外,單純改變分子基團的連接位置,也可以改變HOMO與LUMO的電子雲分佈,進而改變能階高低。而此系列材料熱裂解溫度均大於420 oC,其中僅有PSACz與PSASO在DSC的測量結果下觀察到玻璃轉化溫度與結晶溫度,但Tg分別高達145 oC與244 oC,整體而言具有相當高的熱穩定性,於熱蒸鍍製程中能確保元件品質。而根據PSASO的X-ray單晶繞射結果,此系列材料之蒽基分別與苯基與二苯乙烯基的二面角接近70度,有助於減少濃度淬熄的發生,因此多數分子均有高於90 %的量子產率;除此之外,藉由縮短蒽基分別與苯基與二苯乙烯基間的共軛長度,使分子放光依然可落在深藍光範圍,所有材料在12 wt%摻雜於CBP的元件中,在8伏特的電激發光之CIE座標x與y值相加均≦0.30。除此之外,此系列材料均具有高於5 %的外部量子效率,其中當以PSADPA作為客體材料,以12 wt%摻雜於CBP中之元件最大外部量子效率可達7.4 %,電流效率10.1 cd/A與9.1 lm/W的功率效率,8伏特下的電激發光CIE色度座標位於(0.14, 0.16),屬於深藍光範圍,且最大亮度可高達13568 cd/m2。經由暫態光激發光光譜、變角度光激發光光譜、磁場效應與暫態電激發光光譜可以確認此系列材料之高外部量子效率,來自於TTA機制與較一般隨機排列(Θ=0.67)高的水平排列偶極(Θ=0.83)。
而在本篇論文中的第三章中,我們以雙硼衍生物作為電子受體,並搭配吖啶衍生物作為電子予體,設計兩個橘紅色螢光材料DMACDBA與SpACDBA,且當此二者以12 wt%摻雜於CBP薄膜時,最大放光波長分別為587 nm與570 nm,ΔEST分別為45與69 meV,且具有70 %以上的量子產率。由於DBA電子受體與吖啶電子予體均具一定程度之剛性,因此此二材料之熱穩定性均極為出色,以5 %失重定義為熱裂解溫度時,此二材料均有高於420 oC之熱裂解溫度,且於DSC的測量中,未觀察到任何吸放熱情形,因此在元件製程中也較不會有因熱能而使得元件表現不穩定之情況發生。而此二材料於元件中均有遠高於理論最大值5 %的最大外部量子效率,其中DMACDBA可達到24.0 %,且電流效率54.2 cd/A,功率效率48.7 lm/W,最大放光波長位於581 nm,最大亮度為9596 cd/m2;SpACDBA則可達到31.7 %,且電流效率99.3 cd/A,功率效率89.1 lm/W,最大放光波長位於555 nm,最大亮度為7246 cd/m2。經由時間解析光激發光光譜儀搭配量子產率計算之結果,可以發現DMACDBA與SpACDBA之高效率主要由TADF機制所貢獻,兩者之kRISC均可達到105s-1的數量級。再經由變角度光激發光光譜儀的測量結果,DMACDBA與SpACDBA之水平偶極排列分別為0.84與0.86,相較於等異向性的材料(Θ=0.67)而言,此二材料於摻雜元件中更傾向於水平排列,是造成此二材料較高之外部量子效率之一。
In the first part of this thesis, we successfully designed and synthesized a series of deep-blue dopants, PSADPA, PSACz, PSAPCz, PSAN, PSAN2, PSAPy, PSACN and PSASO by introducing anthracenyl and styryl groups, which are well-known for high quantum yields, and combining with different substituents to tune the energy levels of HO-MOs and LUMOs. Also, from the results of PESA measurement and theoretical calculation, different substituents could lead to different photophysical properties, including energy levels of HOMOs and LUMOs and the emission color as well. Besides, the distributions of HOMOs and LUMOs and their energy differences can also be changed through varying connecting sites of each substituent. These materials all possess decomposition temperature ( defined as 5 wt% loss) higher than 420 oC. Although Tgs and Tcs can be observed for PSACz and PSASO, the Tgs of both are high, 145 oC and 244 oC, respectively, which can assure the quality of OLEDs devices fabricated by the thermal vacuum deposition process. According to the result of single-crystal XRD of PSASO, the anthracenyl groups have dihedral angles of 70o between neighboring phenyl groups and the styryl groups, which can suppress the concentration quenching and lead to quantum yields higher than 90 %; moreover, by shortening the conjugation between anthracenyl groups and neighboring groups, we can sustain the deep-blue emission. When all the materials are 12 wt% doped in CBP, the ELs under 8 V are all with the CIE coordinate of x+y≦0.30. And the highest efficiency can be attained for devices containing PSADPA, with an EQE of 7.4 %, a C.E. of 10.1 cd/A, a P.E. of 9.1 lm/W, a CIE coordinate of (0.14, 0.16) under 8 V, and luminance of 13568 cd/m2. Finally, through the measurements of transient PL, angle-dependent PL, magnetic field effect, and transient EL, we concluded the high efficiency of PSADPA comes from the TTA mechanism and a higher horizontal dipole ratio(Θ=0.83) than isotropic ones (Θ=0.67).
In the second part, we designed and synthesized two materials with orange-red emission, DMACDBA, and SpACDBA. Basing on 9,10-dihydro-9,10-diboraanthracene (DBA) as the electron acceptor and acridine derivatives as electron donors. When these two are doped in CBP (12 wt%), they showed emission maximums at 587 and 570 nm, ΔESTs of 45與69 meV, and higher than 70 % quantum yields. Also, they showed decomposition temperature (5 wt% loss) higher than 420 oC and high stability during DSC measurements due to the rigid DBA acceptor and acridine donors. When applied in devices, they both showed external quantum efficiencies higher than the theoretical one (5 %). For DMACDBA, an EQEmax of 24.0 %, a C.E. of 54.2 cd/A, a P.E. of 48.7 lm/W, an emission maximum at 581 nm, and a luminance of 9596 cd/m2; for SpACDBA, an EQEmax of 31.7 %, a C.E. of 99.3 cd/A, a P.E. of 89.1 lm/W, an emission maximum at 555 nm, and a luminance of 7246 cd/m2. From the analyses and calculations from transient PL spectra and quantum yields, we got high kRISCs reaching 105s-1. As a result, we attribute the high efficiencies to the TADF mechanism. It is noteworthy that from the results of angle-dependent PL, the horizontal dipole ratios are 0.84 and 0.86 for DMACDBA and SpACDBA, respectively. Compared with isotropic materials, these two prefer horizontally oriented, which is also another factor that can further enhance the out-coupling and external quantum efficiency.
1.Kim, S. T., In the 6th International Meeting on Information Display and the International Display Manufacturing Conference Daegu, Korea 2006, Daegu, Korea.
2.Destriau, G. J., J. Chem. Phys. 1936, 33, 587.
3.Pope, M.; Kallmann, H. P.; Magnante, P., J. Chem. Phys. 1963, 38, 2042.
4.Tang, C. W.; VanSlyke, S. A., Appl. Phys. Lett. 1987, 51, 913.
5.C M, N.; Chikker, R.; Barakov, B.; Can, O., Organic Light Emitting Diodes (OLED). 2016.
6.Tang, C. W.; VanSlyke, S. A.; Chen, C. H., J. Appl. Phys. 1989, 65, 3610.
7.Xue, L.; Lu, Q.; Xie, S.; Yin, S., Organic Electronics 2018, 54, 161-166.
8.Förster, T., Disc. Faraday Soc. 1959, 27, 7.
9.Dexter, D. L., J. Chem. Phys. 1953, 21, 836.
10.Klessinger, M.; Michl, J., Excited States and Photochemistry of Organic Molecules. VCH Publishers, New York: 1995.
11.Suzuki, H.; Hoshino, A., J. Appl. Phys. 1996, 79, 8816.
12.Chiang, C. J.; Kimyonok, A.; Etherington, M. K.; Griffiths, G. C.; Jankus, V.; Turksoy, F.; Monkman, A. P., Advanced Functional Materials 2013, 23 (6), 739-746.
13.陳金鑫; 黃孝文, OLED夢幻顯示器.OLED材料與元件. 2009.
14.Bulovic', V.; Khalfin, V. B.; Gu, G.; Burrows, P. E.; Garbuzov, D. Z.; Forrest, S. R., Phys. Rev. B 1998, 58, 3730.
15.Yokoyama, D., J. Mater. Chem 2011, 21, 19187.
16.Lin, H. W.; Lin, C. L.; Chang, H. H.; Lin, Y. T.; Wu, C. C.; Chen, Y. M.; Chen, R. T.; Chien, Y. Y.; Wong, K. T., J. Appl. Phys. 2004, 95, 881.
17.(a) Yokoyama, D.; Sakaguchi, A.; Suzuki, M.; Adachi, C., Appl. Phys. Lett. 2008, 93, 173302; (b) Yokoyama, D.; Sakaguchi, A.; Suzuki, M.; Adachi, C., Appl. Phys. Lett. 2009, 95, 243303.
18.Frischeisen, J.; Yokoyama, D.; Endo, A.; Adachi, C.; Brütting, W., Org. Electron. 2011, 12, 809.
19.Kim, K. H.; Lee, S.; Moon, C. K.; Kim, S. Y.; Park, Y. S.; Lee, J. H.; Woo Lee, J.; Huh, J.; You, Y.; Kim, J. J., Nat. Commun. 2014, 5, 4769.
20.(a) Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R., Phys. Rev. B 1999, 60, 14422; (b) Liu, S. W.; Wang, J. X.; Divayana, Y.; Dev, K.; Tan, S. T.; Demir, H. V.; Sun, X. W., Appl. Phys. Lett. 2013, 102, 053305.
21.Azenha, E. l. G.; Serra, A. C.; Pineiro, M.; Pereira, M. M.; Seixas de Melo, J.; Arnaut, L. G.; Formosinho, S. J.; Rocha Gonsalves, A. M. d. A., Chemical Physics 2002, 280 (1), 177-190.
22.Mehes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C., Angew. Chem. Int. Ed. 2012, 51, 11311.
23.(a) Moral, M.; Muccioli, L.; Son, W. J.; Olivier, Y.; Sancho-García, J. C., Journal of Chemical Theory and Computation 2015, 11 (1), 168-177; (b) Shizu, K.; Sakai, Y.; Tanaka, H.; Hirata, S.; Adachi, C.; Kaji, H., ITE Transactions on Media Technology and Applications 2015, 3 (2), 108-113.
24.Cai, X.; Su, S.-J., Advanced Functional Materials 2018, 28 (43), 1802558.
25.Chou, P. Y.; Chou, H. H.; Chen, Y. H.; Su, T. H.; Liao, C. Y.; Lin, H. W.; Lin, W. C.; Yen, H. Y.; Chen, I. C.; Cheng, C. H., Chemical Communications 2014, 50 (52), 6869-6871.
26.Di, D.; Yang, L.; Richter, J. M.; Meraldi, L.; Altamimi, R. M.; Alyamani, A. Y.; Credgington, D.; Musselman, K. P.; MacManus-Driscoll, J. L.; Friend, R. H., Advanced Materials 2017, 29 (13), 1605987.
27.Hu, J. Y.; Pu, Y. J.; Satoh, F.; Kawata, S.; Katagiri, H.; Sasabe, H.; Kido, J., Advanced Functional Materials 2014, 24 (14), 2064-2071.
28.Chen, Y.-H.; Lin, C.-C.; Huang, M.-J.; Hung, K.; Wu, Y.-C.; Lin, W.-C.; Chen-Cheng, R.-W.; Lin, H.-W.; Cheng, C.-H., Chemical science 2016, 7 (7), 4044-4051.
29.Chou, P.-Y.; Chou, H.-H.; Chen, Y.-H.; Su, T.-H.; Liao, C.-Y.; Lin, H.-W.; Lin, W.-C.; Yen, H.-Y.; Chen, I.-C.; Cheng, C.-H., Chemical Communications 2014, 50 (52), 6869-6871.
30.Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R., Advanced Materials 2010, 22 (5), 572-582.
31.(a) Chi, Y.; Chou, P.-T., Chemical Society Reviews 2010, 39 (2), 638-655; (b) Chou, P.-T.; Chi, Y.; Chung, M.-W.; Lin, C.-C., Coordination Chemistry Reviews 2011, 255 (21-22), 2653-2665.
32.Maheshwaran, A.; Vijaya Gopalan, S.; Park, H.-Y.; Kim, H.; Hyun Han, S.; Yeob Lee, J.; Jin, S.-H., High Efficiency Deep-Blue Phosphorescent Organic Light-Emitting Diodes with CIE x , y (≤ 0.15) and Low Efficiency Roll-Off by Employing a High Triplet Energy Bipolar Host Material. 2018; Vol. 28, p 1802945.
33.Sivasubramaniam, V.; Brodkorb, F.; Hanning, S.; Loebl, H. P.; Elsbergen, V. v.; Boerner, H.; Scherf, U.; Kreyenschmidt, M., J. Fluor. Chem. 2009, 130, 640.
34.Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W., Advanced materials 2014, 26 (47), 7931-7958.
35.Hu, D.; Yao, L.; Yang, B.; Ma, Y., Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 373 (2044), 20140318.
36.Yao, L.; Yang, B.; Ma, Y., Science China Chemistry 2014, 57 (3), 335-345.
37.(a) Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W., Journal of the American Chemical Society 2016, 138 (2), 628-634; (b) Cui, L.-S.; Nomura, H.; Geng, Y.; Kim, J. U.; Nakanotani, H.; Adachi, C., Angewandte Chemie International Edition 2017, 56 (6), 1571-1575; (c) Wang, S.; Zhang, Y.; Chen, W.; Wei, J.; Liu, Y.; Wang, Y., Chemical Communications 2015, 51 (60), 11972-11975; (d) Masui, K.; Nakanotani, H.; Adachi, C., Organic electronics 2013, 14 (11), 2721-2726; (e) Zhang, D.; Zhao, C.; Zhang, Y.; Song, X.; Wei, P.; Cai, M.; Duan, L., ACS applied materials & interfaces 2017, 9 (5), 4769-4777; (f) Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C., Nature Photonics 2014, 8 (4), 326.
38.Chou, P.-Y.; Chou, H.-H.; Chen, Y.-H.; Su, T.-H.; Liao, C.-Y.; Lin, H.-W.; Lin, W.-C.; Yen, H.-Y.; Chen, I.-C.; Cheng, C.-H., Chemical Communications 2014, 50 (52), 6869-6871.
39.Kondakov, D. Y., Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 373 (2044), 20140321.
40.Parker, C.; Hatchard, C., Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1962, 269 (1339), 574-584.
41.Kido, J.; Iizumi, Y., Applied physics letters 1998, 73 (19), 2721-2723.
42.Ganzorig, C.; Fujihira, M., Applied physics letters 2002, 81 (17), 3137-3139.
43.Popovic, Z. D.; Aziz, H., Journal of applied physics 2005, 98 (1), 013510.
44.Mayr, C.; Schmidt, T. D.; Brütting, W., Applied Physics Letters 2014, 105 (18), 168_1.
45.Davis, A. H.; Bussmann, K., Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2004, 22 (4), 1885-1891.
46.Liu, R.; Zhang, Y.; Lei, Y.; Chen, P.; Xiong, Z., Journal of applied physics 2009, 105 (9), 093719.
47.Merrifield, R. E., The Journal of Chemical Physics 1968, 48 (9), 4318-4319.
48.Chen, P.; Xiong, Z.; Peng, Q.; Bai, J.; Zhang, S.; Li, F., Advanced Optical Materials 2014, 2 (2), 142-148.
49.(a) Nguyen, K. A.; Kennel, J.; Pachter, R., The Journal of chemical physics 2002, 117 (15), 7128-7136; (b) Zhang, H.; Tong, H.; Zhao, Y.; Yu, T.; Zhang, P.; Li, J.; Fan, D., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 150, 316-320.
50.Ma, L.; Zhang, K.; Kloc, C.; Sun, H.; Michel-Beyerle, M. E.; Gurzadyan, G. G., Physical Chemistry Chemical Physics 2012, 14 (23), 8307-8312.
51.(a) Zhao, W.; Castellano, F. N., The Journal of Physical Chemistry A 2006, 110 (40), 11440-11445; (b) Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F., Chemical Reviews 2015, 115 (1), 395-465.
52.Kim, S.-K.; Yang, B.; Ma, Y.; Lee, J.-H.; Park, J.-W., Journal of Materials Chemistry 2008, 18 (28), 3376-3384.
53.Suzuki, T.; Nonaka, Y.; Watabe, T.; Nakashima, H.; Seo, S.; Shitagaki, S.; Yamazaki, S., Japanese Journal of Applied Physics 2014, 53 (5), 052102.
54.Hu, J. Y.; Pu, Y. J.; Satoh, F.; Kawata, S.; Katagiri, H.; Sasabe, H.; Kido, J., Advanced Functional Materials 2014, 24 (14), 2064-2071.
55.Aydemir, M.; Haykır, G.; Battal, A.; Jankus, V.; Sugunan, S. K.; Dias, F. B.; Al-Attar, H.; Türksoy, F.; Tavaslı, M.; Monkman, A. P., Organic Electronics 2016, 30, 149-157.
56.Li, Y.; Li, F.; Zhang, H.; Xie, Z.; Xie, W.; Xu, H.; Li, B.; Shen, F.; Ye, L.; Hanif, M.; Ma, D.; Ma, Y., Chemical Communications 2007, (3), 231-233.
57.Tang, X.; Bai, Q.; Shan, T.; Li, J.; Gao, Y.; Liu, F.; Liu, H.; Peng, Q.; Yang, B.; Li, F.; Lu, P., Advanced Functional Materials 2018, 28 (11), 1705813.
58.Peng, L.; Yao, J.-W.; Wang, M.; Wang, L.-Y.; Huang, X.-L.; Wei, X.-F.; Ma, D.-G.; Cao, Y.; Zhu, X.-H., Science Bulletin 2019, 64 (11), 774-781.
59.Hosokawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T., Appl. Phys. Lett. 1995, 17, 2493.
60.Suzuki, K.; Seno, A.; Tanabe, H.; Ueno, K., Synth. Met. 2004, 143, 89.
61.Lee, M. T.; Chen, H. H.; Liao, C. H.; Tsai, C. H.; Chen, C. H., Appl. Phys. Lett. 2004, 85, 3301.
62.(a) Lee, J. H.; Lin, T. C.; Liao, C. C., Proc. of SPIE 2005, 5740, 138; (b) Ho, Y. H.; Lin, T. C.; Wu, C. F.; Lee, J. H., Proc. of SPIE 2006, 6333, 633303.
63.Lee, M. T.; Liao, C. H.; Tsai, C. H.; Chen, C. H., Adv. Mater. 2005, 17, 2493.
64.Chou, H. H.; Chen, Y. H.; Hsu, H. P.; Chang, W. H.; Chen, Y. H.; Cheng, C. H., Adv. Mater. 2012, 24, 5867.
65.Chou, P. Y.; Chou, H. H.; Chen, Y. H.; Su, T. H.; Liao, C. Y.; Lin, H. W.; Lin, W. C.; Yen, H. Y.; Chen, I. C.; Cheng, C. H., Chem. Commun. 2014, 50, 6869.
66.(a) 吳奕靚. 設計與合成具雙偶極性二苯乙烯之客體材料及於藍色螢光有機電致元件之應用. 國立清華大學化學研究所碩士論文, 未出版, 台灣, 2015; (b) 林致均. 雙偶極性咔唑衍生物之設計合成及其於有機電致發光元件上之應用. 國立清華大學化學研究所博士論文, 未出版, 台灣, 2016.
67.Chen, Y.-H.; Lin, C.-C.; Huang, M.-J.; Hung, K.; Wu, Y.-C.; Lin, W.-C.; Chen-Cheng, R.-W.; Lin, H.-W.; Cheng, C.-H., Chemical science 2016, 7 (7), 4044-4051.
68.Hammond, H. A.; DeMeyer, D. E.; Williams, J. L. R., Journal of the American Chemical Society 1969, 91 (18), 5180-5181.
69.陳昱為. 茚並茚客體材料之設計與合成及深藍色螢光有機電致元件之應用. 國立清華大學化學研究所碩士論文, 未出版, 台灣, 2018.
70.Senseman, C. E.; Nelson, O. A., Industrial & Engineering Chemistry 1923, 15 (5), 521-524.
71.Blouin, N.; Leclerc, M., Accounts of Chemical Research 2008, 41 (9), 1110-1119.
72.Nishimoto, T.; Yasuda, T.; Lee, S. Y.; Kondo, R.; Adachi, C., Materials Horizons 2014, 1 (2), 264-269.
73.(a) Deshpande, R. S.; Bulović, V.; Forrest, S. R., Applied Physics Letters 1999, 75 (7), 888-890; (b) Kumar, S.; An, C.-C.; Sahoo, S.; Griniene, R.; Volyniuk, D.; Grazulevicius, J. V.; Grigalevicius, S.; Jou, J.-H., Journal of Materials Chemistry C 2017, 5 (38), 9854-9864.
74.Wu, S.; Aonuma, M.; Zhang, Q.; Huang, S.; Nakagawa, T.; Kuwabara, K.; Adachi, C., Journal of Materials Chemistry C 2014, 2 (3), 421-424.
75.Jones, R. N., Chemical Reviews 1947, 41 (2), 353-371.
76.(a) Chou, P.-T.; Huang; Pu, S.-C.; Cheng, Y.-M.; Liu, Y.-H.; Wang, Y.; Chen, C.-T., The Journal of Physical Chemistry A 2004, 108 (31), 6452-6454; (b) Wong, K.-T.; Ku, S.-Y.; Cheng, Y.-M.; Lin, X.-Y.; Hung, Y.-Y.; Pu, S.-C.; Chou, P.-T.; Lee, G.-H.; Peng, S.-M., The Journal of Organic Chemistry 2006, 71 (2), 456-465.
77.Ge, Z. Y.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto, M. A., Adv. Funct. Mater. 2008, 18, 584.
78.Shi, J.; Tang, C. W.; Chen, C. H. U.S. Patent 5646948, 1997.
79.VanSlyke, S. A.; Tang, C. W. US Patent 5061569, 1991.
80.Xu, H. Y.; Kuo, S. W.; Lee, J. S.; Chang, F. C., Polymer 2002, 43, 5117.
81.Ponterini, G.; Momicchioli, F., The Journal of Physical Chemistry 1988, 92 (14), 4084-4088.
82.Ye, T. L.; Shao, S. Y.; Chen, J. S.; Wang, L. X.; Ma, D. G., ACS applied materials & interfaces 2011, 3, 410.
83.Wilkinson, J.; Davis, A.; Bussmann, K.; P. Long, J., Applied Physics Letters 2005, 86, 111109-111109.
84.(a) Peng, Q.; Li, W.; Zhang, S.; Chen, P.; Li, F.; Ma, Y., Advanced Optical Materials 2013, 1 (5), 362-366; (b) Chen, Q.; Jia, W.; Chen, L.; Yuan, D.; Zou, Y.; Xiong, Z., Scientific Reports 2016, 6, 25331; (c) Peng, Q.; Sun, J.; Li, X.; Li, M.; Li, F., Applied Physics Letters 2011, 99 (3), 033509.
85.Johnson, R. C.; Merrifield, R. E.; Avakian, P.; Flippen, R. B., Physical Review Letters 1967, 19 (6), 285-287.
86.Davis, A. H.; Bussmann, K., Journal of Vacuum Science & Technology A 2004, 22 (4), 1885-1891.
87.周沛瑜. 深藍光有機發光二極體效率與壽命探討. 國立清華大學化學研究所博士論文, 未出版, 台灣, 2014.
88.孫于雯. 芘菲衍生物之主體材料應用於藍色有機發光二極體. 國立清華大學化學研究所碩士論文, 未出版, 台灣, 2017.
89.Lee, J.-H.; Chen, C.-H.; Lee, P.-H.; Lin, H.-Y.; Leung, M.-k.; Chiu, T.-L.; Lin, C.-F., Journal of Materials Chemistry C 2019, 7 (20), 5874-5888.
90.Sasabe, H.; Kido, J., Chem. Mater. 2011, 23, 621.
91.(a) Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Nature 1998, 395, 151; (b) Lu, K.-Y.; Chou, H.-H.; Hsieh, C.-H.; Yang, Y.-H. O.; Tsai, H.-R.; Tsai, H.-Y.; Hsu, L.-C.; Chen, C.-Y.; Chen, I.-C.; Cheng, C.-H., Advanced Materials 2011, 23 (42), 4933-4937.
92.Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Nature 2012, 492, 234.
93.(a) Shizu, K.; Sakai, Y.; Tanaka, H.; Hirata, S.; Adachi, C.; Kaji, H., ITE Transactions on Media Technology and Applications 2015, 3 (2), 108-113; (b) Moral, M.; Muccioli, L.; Son, W. J.; Olivier, Y.; Sancho-García, J. C., Journal of Chemical Theory and Computation 2015, 11 (1), 168-177.
94.El-Sayed, M. A., Accounts of Chemical Research 1968, 1 (1), 8-16.
95.(a) Lobsiger, S.; Etinski, M.; Blaser, S.; Frey, H.-M.; Marian, C.; Leutwyler, S., The Journal of Chemical Physics 2015, 143 (23), 234301; (b) Marian, C. M., The Journal of Physical Chemistry C 2016, 120 (7), 3715-3721; (c) Gibson, J.; Monkman, A. P.; Penfold, T. J., ChemPhysChem 2016, 17 (19), 2956-2961; (d) Chen, X.-K.; Zhang, S.-F.; Fan, J.-X.; Ren, A.-M., The Journal of Physical Chemistry C 2015, 119 (18), 9728-9733.
96.(a) Ward, J. S.; Nobuyasu, R. S.; Batsanov, A. S.; Data, P.; Monkman, A. P.; Dias, F. B.; Bryce, M. R., Chemical Communications 2016, 52 (12), 2612-2615; (b) Etherington, M. K.; Gibson, J.; Higginbotham, H. F.; Penfold, T. J.; Monkman, A. P., Nature Communications 2016, 7, 13680.
97.Blouin, N.; Leclerc, M., Accounts of Chemical Research 2008, 41 (9), 1110-1119.
98.Escande, A.; Ingleson, M. J., Chemical Communications 2015, 51 (29), 6257-6274.
99.Ji, L.; Griesbeck, S.; Marder, T. B., Chemical Science 2017, 8 (2), 846-863.
100.Suzuki, K.; Kubo, S.; Shizu, K.; Fukushima, T.; Wakamiya, A.; Murata, Y.; Adachi, C.; Kaji, H., Angewandte Chemie International Edition 2015, 54 (50), 15231-15235.
101.Numata, M.; Yasuda, T.; Adachi, C., Chemical Communications 2015, 51 (46), 9443-9446.
102.Shiu, Y.-J.; Cheng, Y.-C.; Tsai, W.-L.; Wu, C.-C.; Chao, C.-T.; Lu, C.-W.; Chi, Y.; Chen, Y.-T.; Liu, S.-H.; Chou, P.-T., Angewandte Chemie International Edition 2016, 55 (9), 3017-3021.
103.Furue, R.; Nishimoto, T.; Park, I. S.; Lee, J.; Yasuda, T., Angewandte Chemie International Edition 2016, 55 (25), 7171-7175.
104.Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H., Nature Photonics 2018, 12 (4), 235-240.
105.Wu, T.-L.; Lo, S.-H.; Chang, Y.-C.; Huang, M.-J.; Cheng, C.-H., ACS Applied Materials & Interfaces 2019, 11 (11), 10768-10776.
106.Ahn, D. H.; Kim, S. W.; Lee, H.; Ko, I. J.; Karthik, D.; Lee, J. Y.; Kwon, J. H., Nature Photonics 2019.
107.Kondo, Y.; Yoshiura, K.; Kitera, S.; Nishi, H.; Oda, S.; Gotoh, H.; Sasada, Y.; Yanai, M.; Hatakeyama, T., Nature Photonics 2019.
108.Zeng, W.; Lai, H.-Y.; Lee, W.-K.; Jiao, M.; Shiu, Y.-J.; Zhong, C.; Gong, S.; Zhou, T.; Xie, G.; Sarma, M.; Wong, K.-T.; Wu, C.-C.; Yang, C., Advanced Materials 2018, 30 (5), 1704961.
109.Furue, R.; Matsuo, K.; Ashikari, Y.; Ooka, H.; Amanokura, N.; Yasuda, T., Advanced Optical Materials 2018, 6 (5), 1701147.
110.(a) Reus, C.; Weidlich, S.; Bolte, M.; Lerner, H.-W.; Wagner, M., Journal of the American Chemical Society 2013, 135 (34), 12892-12907; (b) Cui, L.-S.; Nomura, H.; Geng, Y.; Kim, J. U.; Nakanotani, H.; Adachi, C., Angewandte Chemie International Edition 2017, 56 (6), 1571-1575.
111.Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W., Advanced materials 2014, 26 (47), 7931-7958.
112.(a) Ganesan, P.; Chen, D.-G.; Liao, J.-L.; Li, W.-C.; Lai, Y.-N.; Luo, D.; Chang, C.-H.; Ko, C.-L.; Hung, W.-Y.; Liu, S.-W.; Lee, G.-H.; Chou, P.-T.; Chi, Y., Journal of Materials Chemistry C 2018, 6 (37), 10088-10100; (b) Lin, T.-A.; Chatterjee, T.; Tsai, W.-L.; Lee, W.-K.; Wu, M.-J.; Jiao, M.; Pan, K.-C.; Yi, C.-L.; Chung, C.-L.; Wong, K.-T.; Wu, C.-C., Advanced Materials 2016, 28 (32), 6976-6983.
113.(a) Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C., Nature Photonics 2014, 8 (4), 326; (b) Zhang, Q.; Kuwabara, H.; Potscavage Jr, W. J.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C., Journal of the American Chemical Society 2014, 136 (52), 18070-18081; (c) Data, P.; Pander, P.; Okazaki, M.; Takeda, Y.; Minakata, S.; Monkman, A. P., Angewandte Chemie International Edition 2016, 55 (19), 5739-5744.
114.Januszewski, E.; Lorbach, A.; Grewal, R.; Bolte, M.; Bats, J. W.; Lerner, H.-W.; Wagner, M., Chemistry – A European Journal 2011, 17 (45), 12696-12705.
115.Zhang, Q.; Kuwabara, H.; Potscavage, W. J.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C., Journal of the American Chemical Society 2014, 136 (52), 18070-18081.
116.(a) Wong, M. Y.; Zysman-Colman, E., Advanced Materials 2017, 29 (22), 1605444; (b) Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P., Chemical Society Reviews 2017, 46 (3), 915-1016.
117.Ye, T. L.; Shao, S. Y.; Chen, J. S.; Wang, L. X.; Ma, D. G., ACS applied materials & interfaces 2011, 3, 410.
118.(a) Lin, H.-W.; Lu, C.-W.; Lin, L.-Y.; Chen, Y.-H.; Lin, W.-C.; Wong, K.-T.; Lin, F., Journal of Materials Chemistry A 2013, 1 (5), 1770-1777; (b) Shin, H.; Lee, J.-H.; Moon, C.-K.; Huh, J.-S.; Sim, B.; Kim, J.-J., Advanced Materials 2016, 28 (24), 4920-4925.
119.黃佩芸. 硼摻雜型石墨烯電極與熱活化延遲螢光雙硼材料於有機發光二極體元件之應用. 國立清華大學化學研究所碩士論文, 未出版, 台灣, 2017.
120.Tsai, W.-L.; Huang, M.-H.; Lee, W.-K.; Hsu, Y.-J.; Pan, K.-C.; Huang, Y.-H.; Ting, H.-C.; Sarma, M.; Ho, Y.-Y.; Hu, H.-C.; Chen, C.-C.; Lee, M.-T.; Wong, K.-T.; Wu, C.-C., Chemical Communications 2015, 51 (71), 13662-13665.
121.Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C., Nature Photonics 2012, 6, 253.
122.Desai, P.; Shakya, P.; Kreouzis, T.; Gillin, W.; Morley, N.; Gibbs, M., Physical Review B 2007, 75 (9), 094423.