簡易檢索 / 詳目顯示

研究生: 鄭聿航
Cheng, Yu-Hang
論文名稱: 聚焦式超音波驅動超順磁性氧化鐵鍵結阿黴素乘載之微氣泡於血腦屏障開啟、藥物遞送、核磁共振影像監測之可行性研究
Feasibility Study of SPIO-DOX Conjugate-Loaded Microbubbles for Concurrent Blood-Brain Barrier Opening, MRI Imaging and Focused-Ultrasound Enhanced Drug Delivery
指導教授: 葉秩光
Yeh, Chih-Kuang
口試委員: 劉浩澧
Hao-Li, Liu
李夢麟
Meng-Lin, Li
張建文
Chien-Wen,Chang
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 聚焦式超音波血腦屏障橫向遲緩率分布圖載藥微氣泡藥物定量
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經膠質母細胞瘤為腦瘤中最常見之惡性腫瘤,目前主流之治療方式為化學治療,但其治療效果並不顯著,一來由於腦中特化之血腦屏障結構,阻擋化療藥物進入腦腫瘤中進行治療;二來由於化療藥物無法進入血腦屏障的情況下,勢必需要增加藥物遞送的量,進而導致其他周圍組織器官之損害,產生不必要之副作用,因此如何提升血腦屏障之通透性並提升化療藥物累積量為現下藥物遞送的概念。近年來已有許多文獻證實使用聚焦式超音波配合負載藥物之微氣泡進行腦部藥物遞送之可行性,能夠同時達到提升血腦屏障之通透性、定點釋藥,並降低化療藥物之副作用等目的;然而,目前的影像工具僅能提供血腦屏障開啟位置的資訊,無法得知治療後藥物釋放至腦中的分布與濃度。超順磁性氧化鐵粒子(superparamagnetic iron oxide nanoparticle, SPIO),為核磁共振之負向顯影劑,已被證實可藉由核磁共振造影觀測出血腦屏障開啟的區域。因此本研究的目的是將超順磁性氧化鐵粒子與化療藥物阿黴素(doxorubicin, DOX)鍵結在一起(SD複合物),並負載於微氣泡上,簡稱為SD-MBs,希望藉由核磁共振造影動態監測SD-MBs被聚焦式超音波驅動釋藥後,超順磁性氧化鐵粒子在腦中分布的位置與濃度,由於顯影之處就表示阿黴素之存在,因而可以即時評估藥物遞送之訊息。此外,由於SD複合物具有趨磁性,我們也將評估是否能利用磁標靶強化藥物在腦中的累積量。
    本研究先將帶有胺基的超順磁性氧化鐵粒子與阿黴素的羰基以共價鍵的形式鍵結在一起,再將鍵結好的複合物以疏水作用力吸附在微氣泡的磷脂質殼層,形成SD-MBs。之後最佳化乘載於微氣泡上的SD複合物,再對SD-MBs進行物理性質與穩定性量測分析,並評估其於超音波以及核磁共振影像下之顯影能力,以及是否能被聚焦式超音波驅動釋藥而對腦瘤細胞有毒殺的效果。另外,我們也將進行動物實驗,使用聚焦式超音波(1 MHz, 0.3 MPa, 5000 cycles, PRF = 1 Hz, duty cycle = 0.5 %, 施打4點, 照射時間 = 240 s/點)與無載藥之微氣泡配合靜脈注射SD複合物或SD-MBs開啟血腦屏障後,以核磁共振橫向遲緩率分布圖(R2-MAP)影像即時監測遞送至腦部的SD複合物,最後利用高效液相層析儀配合UV偵檢器定量腦中阿黴素的濃度。
    結果顯示SD-MBs具有大量乘載SD複合物的能力、良好的穩定性、及超順磁性之特性,並且被聚焦式超音波擊破後能有效毒殺腦瘤細胞。而在活體評估藥物遞送情形的結果發現在有磁標靶的狀況下,可於目標區域增加藥物九倍的累積量(從0.25 μg提升到2.23 μg);但亦發現若是提高聲壓造成腦組織出血的話,反而會因出血競爭而降低藥物遞送量;在核磁共振造影的部分,即時負向顯影的區域與血腦屏障開啟的位置相當一致,表示可由影像顯影程度而推回藥物濃度與分布位置。
    本研究已經證實了SD-MBs可以和聚焦式超音波產生局部血腦屏障開啟並同時遞送SD複合物進腦組織供核磁共振造影偵測藥物分布位置。此外,SD複合物可藉由磁標靶而增加藥物累積量。未來工作將應用此藥物釋放平台至大鼠腦瘤模型,進一步在SD-MBs上修飾專一性標誌配位體,配合磁標靶,達到雙重標靶治療之目的。


    第一章 緒論 1 1.1. 腦瘤 1 1.1.1. 神經膠質母細胞瘤(Glioblastoma multiforme, GBM) 2 1.1.2. 神經膠質母細胞瘤治療方法與瓶頸 3 1.1.3. 阿黴素(Doxorubicin, DOX) 4 1.2. 血腦屏障(Blood Brain Barrier, BBB) 5 1.2.1. 醫用超音波 7 1.2.2. 超音波與物質之作用 7 1.3. MRI/US 雙顯影試劑 9 1.3.1. 核磁共振顯影劑 9 1.3.2. 超順磁性氧化鐵粒子作為藥物載體 10 1.3.3. 超音波對比劑-微氣泡 11 1.3.4. 超順磁性氧化鐵粒子承載於微氣泡 12 1.4. 核磁共振顯影劑之藥物定量 15 1.5. 研究動機與目的 16 第二章 實驗材料與方法 18 2.1. 超順磁性氧化鐵粒子鍵結阿黴素(SPIO-DOX)之製備 18 2.2. 造影微氣泡(MBs)之製備 19 2.3. 超順磁性氧化鐵粒子鍵結阿黴素承載於微氣泡(SD-MBs)之製備 19 2.4. SD-MBs的物理性質分析 20 2.4.1. 粒徑分析 20 2.4.2. 光學性質量測 21 2.4.3. 磁性測量及磁吸力測試 21 2.4.4. SD鐵定量及SD-MBs之SPIO承載定量 21 2.4.5. SD及SD-MBs之DOX鍵結承載效率 22 2.4.6. 藥物滯留率分析 23 2.5. 仿體實驗 24 2.5.1. SD-MBs超音波聲學穩定性測試 24 2.5.2. 核磁共振對比影像之R2定量分析 25 2.6. 細胞實驗 27 2.6.1. 細胞培養 27 2.6.2. 藥物載體之毒性測試 27 2.7. 動物實驗架構 30 2.7.1. 高頻超音波影像系統 30 2.7.2. 商用高頻超音波Vevo®2100影像系統 31 2.7.3. 聚焦式超音波 32 2.8. 動物實驗流程 34 2.8.1 聚焦式超音波驅動微氣泡開啟血腦屏障進行藥物遞送之可行性流程 35 2.8.2 以MRI監測聚焦式超音波驅動微氣泡開啟血腦屏障之流程 36 2.8.3 動物犧牲取腦與組織切片 37 2.9. 動物實驗之腦內定量分析 38 2.9.1. 鼠腦MRI影像分析 38 2.9.2. 鼠腦DOX藥量分析 38 2.10. 統計分析 39 第三章 結果與討論 41 3. 概述 41 3.1. SD-MBs性質量測 41 3.1.1. SD-MBs光學性質 41 3.1.2. SD-MBs粒徑分布 43 3.1.3. SD-MBs磁性量測 44 3.1.4. SD鍵結效率 47 3.1.5. SPIO與DOX包覆於SD-MBs之承載量 48 3.1.6. SD-MBs藥物穩定性 52 3.1.7. SD-MBs聲學穩定性 53 3.1.8. MRI仿體實驗對比結果 54 3.2. 細胞實驗之毒性測試 56 3.3. 動物實驗 59 3.3.1. SD-MBs活體內存活時間 59 3.3.2. 血腦屏障開啟之參數選定 60 3.3.3. 活體內DOX藥量分析 62 3.3.4. 活體MRI影像對比定量分析 63 第四章 結論 68 第五章 未來展望 71 參考文獻 72

    [1] E. S. Nussbaum, H. R. Djalilian, K. H. Cho, and W. A. Hall, "Brain metastases - Histology, multiplicity, surgery, and survival," Cancer, vol. 78, pp. 1781-1788, Oct 15 1996.
    [2] D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger, A. Jouvet, et al., "The 2007 WHO classification of tumours of the central nervous system," Acta Neuropathologica, vol. 114, pp. 97-109, Aug 2007.
    [3] J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, "Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008," International Journal of Cancer, vol. 127, pp. 2893-2917, Dec 15 2010.
    [4] "cancer registryannual report, 2008 Taiwan," D. o. H. Bureau of Health Promotion, R.O.C.(Taiwan), Ed., ed, 2010.
    [5] E. C. Burton, K. R. Lamborn, B. G. Feuerstein, M. Prados, J. Scott, P. Forsyth, et al., "Genetic aberrations defined by comparative genomic hybridization distinguish long-term from typical survivors of glioblastoma," Cancer Research, vol. 62, pp. 6205-6210, Nov 1 2002.
    [6] D. Krex, B. Klink, C. Hartmann, A. von Deimling, T. Pietsch, M. Simon, et al., "Long-term survival with glioblastoma multiforme," Brain, vol. 130, pp. 2596-2606, Oct 2007.
    [7] J. C. Buckner, P. D. Brown, B. P. O'Neill, F. B. Meyer, C. J. Wetmore, and J. H. Uhm, "Central nervous system tumors," Mayo Clinic Proceedings, vol. 82, pp. 1271-1286, Oct 2007.
    [8] M. S. Lesniak, U. Upadhyay, R. Goodwin, B. Tyler, and H. Brem, "Local delivery of doxorubicin for the treatment of malignant brain tumors in rats," Anticancer Res, vol. 25, pp. 3825-31, Nov-Dec 2005.
    [9] K. D. Geiger, S. C. J. Steiniger, J. Kreuter, A. Khalanski, I. Skidan, A. Bobruskin, et al., "Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles," Acta Neuropathologica, vol. 104, pp. 551-551, Nov 2002.
    [10] P. Hau, K. Fabel, U. Baumgart, P. Rummele, O. Grauer, A. Bock, et al., "Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma," Cancer, vol. 100, pp. 1199-207, Mar 15 2004.
    [11] W. M. Pardridge, "Drug and gene delivery to the brain: the vascular route," Neuron, vol. 36, pp. 555-8, Nov 14 2002.
    [12] N. Vykhodtseva, N. McDannold, and K. Hynynen, "Progress and problems in the application of focused ultrasound for blood-brain barrier disruption," Ultrasonics, vol. 48, pp. 279-96, Aug 2008.
    [13] F. Y. Yang, W. M. Fu, R. S. Yang, H. C. Liou, K. H. Kang, and W. L. Lin, "Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption," Ultrasound Med Biol, vol. 33, pp. 1421-7, Sep 2007.
    [14] I. Lentacker, S. C. De Smedt, and N. N. Sanders, "Drug loaded microbubble design for ultrasound triggered delivery," Soft Matter, vol. 5, pp. 2161-2170, 2009.
    [15] D. Emerich, R. Dean, C. Osborn, and R. Bartus, "The Development of the Bradykinin Agonist Labradimil as a Means to Increase the Permeability of the Blood-Brain Barrier," Clinical Pharmacokinetics, vol. 40, pp. 105-123, 2001/02/01 2001.
    [16] H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, et al., "Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment," Radiology, vol. 255, pp. 415-425, May 2010.
    [17] S. Mitragotri, "Innovation - Healing sound: the use of ultrasound in drug delivery and other therapeutic applications," Nature Reviews Drug Discovery, vol. 4, pp. 255-260, Mar 2005.
    [18] V. Alakhov, E. Klinski, S. M. Li, G. Pietrzynski, A. Venne, E. Batrakova, et al., "Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials," Colloids and Surfaces B-Biointerfaces, vol. 16, pp. 113-134, Nov 1999.
    [19] M. E. Davis, Z. G. Chen, and D. M. Shin, "Nanoparticle therapeutics: an emerging treatment modality for cancer," Nat Rev Drug Discov, vol. 7, pp. 771-82, Sep 2008.
    [20] K. J. Widder, R. M. Morris, G. A. Poore, D. P. Howard, and A. E. Senyei, "Selective Targeting of Magnetic Albumin Microspheres Containing Low-Dose Doxorubicin - Total Remission in Yoshida Sarcoma-Bearing Rats," European Journal of Cancer & Clinical Oncology, vol. 19, pp. 135-139, 1983.
    [21] Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, "Applications of magnetic nanoparticles in biomedicine," Journal of Physics D-Applied Physics, vol. 36, pp. R167-R181, Jul 7 2003.
    [22] M. Y. Hua, H. W. Yang, H. L. Liu, R. Y. Tsai, S. T. Pang, K. L. Chuang, et al., "Superhigh-magnetization nanocarrier as a doxorubicin delivery platform for magnetic targeting therapy," Biomaterials, vol. 32, pp. 8999-9010, Dec 2011.
    [23] L. Zhu, D. Wang, X. Wei, X. Zhu, J. Li, C. Tu, et al., "Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging," J Control Release, vol. 169, pp. 228-38, Aug 10 2013.
    [24] X. M. Zhu, J. Yuan, K. C. F. Leung, S. F. Lee, K. W. Y. Sham, C. H. K. Cheng, et al., "Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity," Nanoscale, vol. 4, pp. 5744-5754, 2012.
    [25] M. Rahimi, A. Wadajkar, K. Subramanian, M. Yousef, W. Cui, J. T. Hsieh, et al., "In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery," Nanomedicine, vol. 6, pp. 672-80, Oct 2010.
    [26] F. M. Kievit, F. Y. Wang, C. Fang, H. Mok, K. Wang, J. R. Silber, et al., "Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro," J Control Release, vol. 152, pp. 76-83, May 30 2011.
    [27] N. de Jong, "Improvements in ultrasound contrast agents," Engineering in Medicine and Biology Magazine, IEEE, vol. 15, pp. 72-82, 1996.
    [28] P. J. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate, and N. de Jong, "Ultrasound contrast imaging: current and new potential methods," Ultrasound Med Biol, vol. 26, pp. 965-75, Jul 2000.
    [29] N. de Jong, A. Bouakaz, and P. Frinking, "Basic acoustic properties of microbubbles," Echocardiography, vol. 19, pp. 229-40, Apr 2002.
    [30] A. L. Alexander, T. T. McCreery, T. R. Barrette, A. F. Gmitro, and E. C. Unger, "Microbubbles as novel pressure-sensitive MR contrast agents," Magnetic Resonance in Medicine, vol. 35, pp. 801-806, Jun 1996.
    [31] T. Ueguchi, Y. Tanaka, S. Hamada, R. Kawamoto, Y. Ogata, M. Matsumoto, et al., "Air Microbubbles as MR Susceptibility Contrast Agent at 1.5 Tesla," Magnetic Resonance in Medical Sciences, vol. 5, pp. 147-150, 2006.
    [32] K. K. Wong, I. Huang, Y. R. Kim, H. Y. Tang, E. S. Yang, K. K. Kwong, et al., "In vivo study of microbubbles as an MR susceptibility contrast agent," Magnetic Resonance in Medicine, vol. 52, pp. 445-452, Sep 2004.
    [33] R. Dharmakumar, D. B. Plewes, and G. A. Wright, "On the parameters affecting the sensitivity of MR measures of pressure with microbubbles," Magn Reson Med, vol. 47, pp. 264-73, Feb 2002.
    [34] K. Soetanto and H. Watarai, "Development of magnetic microbubbles for drug delivery system (DDS)," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 39, pp. 3230-3232, May 2000.
    [35] F. Yang, A. Y. Gu, Z. P. Chen, N. Gu, and M. Ji, "Multiple emulsion microbubbles for ultrasound imaging," Materials Letters, vol. 62, pp. 121-124, Jan 15 2008.
    [36] A. M. Chow, K. W. Y. Chan, J. S. Cheung, and E. X. Wu, "Enhancement of Gas-Filled Microbubble R(2)* by Iron Oxide Nanoparticles for MRI," Magnetic Resonance in Medicine, vol. 63, pp. 224-229, Jan 2010.
    [37] Z. Liu, T. Lammers, J. Ehling, S. Fokong, J. Bornemann, F. Kiessling, et al., "Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging," Biomaterials, vol. 32, pp. 6155-6163, Sep 2011.
    [38] F. Yang, Y. X. Li, Z. P. Chen, Y. Zhang, J. R. Wu, and N. Gu, "Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging," Biomaterials, vol. 30, pp. 3882-3890, Aug 2009.
    [39] T. B. Brismar, D. Grishenkov, B. Gustafsson, J. Harmark, A. Barrefelt, S. V. V. N. Kothapalli, et al., "Magnetite Nanoparticles Can Be Coupled to Microbubbles to Support Multimodal Imaging," Biomacromolecules, vol. 13, pp. 1390-1399, May 2012.
    [40] W. He, F. Yang, Y. H. Wu, S. Wen, P. Chen, Y. Zhang, et al., "Microbubbles with surface coated by superparamagnetic iron oxide nanoparticles," Materials Letters, vol. 68, pp. 64-67, Feb 1 2012.
    [41] C. Niu, Z. Wang, G. Lu, T. M. Krupka, Y. Sun, Y. You, et al., "Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes," Biomaterials, vol. 34, pp. 2307-17, Mar 2013.
    [42] A. Raisinghani and A. N. DeMaria, "Physical principles of microbubble ultrasound contrast agents," American Journal of Cardiology, vol. 90, pp. 3J-7J, Nov 18 2002.
    [43] E. Stride, "The influence of surface adsorption on microbubble dynamics," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 366, pp. 2103-2115, Jun 28 2008.
    [44] F. Yang, M. Zhang, W. He, P. Chen, X. Cai, L. Yang, et al., "Controlled release of Fe3O4 nanoparticles in encapsulated microbubbles to tumor cells via sonoporation and associated cellular bioeffects," Small, vol. 7, pp. 902-10, Apr 4 2011.
    [45] J. Wu, H. Leong-Poi, J. Bin, L. Yang, Y. Liao, Y. Liu, et al., "Efficacy of contrast-enhanced US and magnetic microbubbles targeted to vascular cell adhesion molecule-1 for molecular imaging of atherosclerosis," Radiology, vol. 260, pp. 463-71, Aug 2011.
    [46] D. Vlaskou, O. Mykhaylyk, F. Krotz, N. Hellwig, R. Renner, U. Schillinger, et al., "Magnetic and Acoustically Active Lipospheres for Magnetically Targeted Nucleic Acid Delivery," Advanced Functional Materials, vol. 20, pp. 3881-3894, Nov 23 2010.
    [47] P. C. Chu, W. Y. Chai, H. Y. Hsieh, J. J. Wang, S. P. Wey, C. Y. Huang, et al., "Pharmacodynamic Analysis of Magnetic Resonance Imaging-Monitored Focused Ultrasound-Induced Blood-Brain Barrier Opening for Drug Delivery to Brain Tumors," Biomed Research International, 2013.
    [48] H. L. Liu, P. Y. Chen, H. W. Yang, J. S. Wu, I. C. Tseng, Y. J. Ma, et al., "In Vivo MR Quantification of Superparamagnetic Iron Oxide Nanoparticle Leakage During Low-Frequency-Ultrasound-Induced Blood-Brain Barrier Opening In Swine," Journal of Magnetic Resonance Imaging, vol. 34, pp. 1313-1324, Dec 2011.
    [49] A. Serotec. (2011). alamarBlue® Technical Datasheet.
    [50] H. L. Liu, M. Y. Hua, H. W. Yang, C. Y. Huang, P. C. Chu, J. S. Wu, et al., "Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain," Proc Natl Acad Sci U S A, vol. 107, pp. 15205-10, Aug 24 2010.
    [51] D. X. Lu, X. T. Wen, J. Liang, X. D. Zhang, Z. W. Gu, and Y. J. Fan, "Novel pH-sensitive drug delivery system based on natural polysaccharide for doxorubicin release," Chinese Journal of Polymer Science, vol. 26, pp. 369-374, May 2008.
    [52] Y. F. Huang, D. Shangguan, H. Liu, J. A. Phillips, X. Zhang, Y. Chen, et al., "Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells," Chembiochem, vol. 10, pp. 862-8, Mar 23 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE