簡易檢索 / 詳目顯示

研究生: 林冠君
Lin, Kaun Chun
論文名稱: 化學氣相沉積法備製之石墨烯其超快載子動力學研究
Ultrafast Carrier Dynamics of Chemical Vapor Deposited Graphene
指導教授: 陳正中
口試委員: 陳正中
齊正中
潘犀靈
羅志偉
林大欽
牟中瑜
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 109
中文關鍵詞: 石墨烯化學氣象沉積法超快載子動力學兆赫波閘極偏壓固態高分子電解質薄膜
外文關鍵詞: graphene, chemical vapor deposition, ultrafast carrier dynamics, THz, gating, polymer electrolyte
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用光激發-兆赫波探測頻譜來了解化學氣象沉積法所備製之石墨烯其超快載子動力學,並同時藉由外加閘極偏壓於固態高分子聚合物上來改變石墨烯的費米能階,以研究石墨烯在不同參雜狀況下之載子弛豫行為。我們發現化學氣象沉積法所備製的石墨烯頻譜,相較於早期磊晶成長在碳化矽的石墨烯研究,當探測光能量落在費米面附近,其光激發載子的行為有幾個迥異之處。首先,我們觀察到光激發後穿透度變化為正值,也就是說,得到載子激發後呈現負值的光電導率。另外,光激發後頻譜回復的曲線滿足指數遞減,且其衰減時間與光強度和費米能階位置都有很大的關連。為了更加了解激發載子弛豫行為的機制,我們以理論模擬考慮載子與光學聲子之間的散射,並包含載子溫度與光聲子數目隨時變的關係以擬和弛豫過程中激發載子的行為。從模擬中我們發現以往單純考慮石墨烯為一半導體的模型架構是不足的,石墨烯的行為更近似於一個沒有禁止能帶的材料,導致激發的電子與電洞彼此可以更快速地達到熱平衡,且此熱平衡可以用高溫且電子電洞對應到共同費米能階的近費米分布來描述。另外,值得注意的是不同於半導體,載子的平均散射率會隨著溫度而增加,類似於金屬的行為,而且在載子弛豫的過程裡面扮演極重要的角色,導致我們所觀察到負的電導率,以及隨光強度或者是費米能階不同而改變的衰減時間。同時,載子的平均散射率也會隨著費米能階增加,呈現兩個截然不同的行為區間。在費米能階相對於電荷中性點(charge neutral point)大於91 meV之後,越遠離電荷中性點,載子平均散射率越高;反之,在91 meV之間,越靠近電荷中性點,載子平均率散射率越高。這是因為當費米能階在靠近電荷中性點附近,電荷雜質會主導載子在低能量的散射,這時增加載子濃度會使雜質受到屏蔽效應的影響,導致載子平均率下降。改變參雜量而得到截然不同的平均散射率行為,除了提供載子在低能量的區間有不同的弛豫行為外,研究中所觀察'到不同的參雜量下影響載子降溫速度,也為石墨烯增加一個新的調變機制,在未來高溫載子傳導的石墨烯元件上開啟新的應用性。


    Abstract
    We present optical-pump THz-probe spectroscopy to measure the ultrafast relaxation dynamics of quasi-particle on monolayer chemical vapor deposited (CVD) graphene, and the Fermi levels can be tuned in a wide range by applying gate voltage on the casted polymer electrolyte. As probing the photoexcited carriers around the Fermi level, it has shown several controversial results from the ultrafast studies on graphene grown on SiC. One is a positive pump induced differential transmission (PIDT), that is, a transient negative conductivity after photoexcitation, and the others is the extracted exponential decay times of PIDT depend on the pump fluence and the doping levels. To better understand the relaxation dynamics, we model the relaxation process involving electron-phonon coupling together with a set of rate equations to describe the transient responses of quasi-particles and optical phonons. The simulation results indicate that graphene cannot be treated as semiconductor as usual; it is more like a zero bandgap material that gives rise to a fast thermalization among carriers after pumping and reaches a quasi-Fermi distribution described by a common Fermi level with a relatively high carrier temperature. It is also noted that the metallic temperature-dependent carrier scattering rate plays a significant role in the cooling process, leading to different observations of the relaxation dynamics. The carrier scattering rate shows two distinct behaviors with the Fermi level separated by a turning point at 91 meV. As approaching charge neutral point, the carrier scattering rate is dominated by charge impurities and decreases with increasing the doping levels due to the screening effect. Different scattering mechanism in two distinct regions leads to the change of relaxation dynamics and gives a clear new cooling control variable. The cooling rate can be changed by varying the doping levels providing means for a variety of new applications that rely on hot-carrier transport.

    Table of Contents Abstract i Acknowledgement ii Table of contents iii List of Figures v List of Tables x Chapter 1: Introduction 1 1.1 Grephene, a promising material 1 1.2 Carrier relaxation dynamics of graphene: a review 4 1.2.1 Pump-probe experiments 4 1.2.2 Optical-pump THz-probe experiments 5 1.3 Motivation 8 1.4 Overview of the thesis 10 Chapter 2: Basic Theories of Graphene 13 2.1 Electronic structure of graphene 13 2.2 Optical properties in the THz spectral range 15 2.1.1 Light absorption 16 2.1.2 Optical conductivity in THz region 16 2.3 Phonon properties in graphene 18 2.3.1 Phonon dispersion relation 19 2.3.2 Electron-optical phonon interaction 21 Chapter 3: Sample Fabrication and Characterization 24 3.1 Preparation of Graphene sample 24 3.1.1 Chemical Vapor Deposition (CVD) 24 3.1.2 Metal electrodes 27 3.1.3 Liquid gate fabrication 28 3.2 Van der Pauw measurements 28 3.3 Raman measurements 30 3.3.1 Raman scattering 30 3.3.2 Thickness measurement by using Raman spectrum 32 3.4 Time-resolved spectroscopy 35 3.4.1 Pump-probe spectroscopy 35 3.4.2 Ultrafast laser source 36 3.4.3 THz time-resolved spectroscopy setup 39 3.4.4 Optical-pump THz-probe spectroscopy setup 41 3.5 Cooling system 42 Chapter 4: Ultrafast Dynamics of Hot Electrons and Phonons in CVD Graphene 43 4.1 Introduction 43 4.2 Experimental setup 45 4.3 Experimental results 46 4.4 Theoretical model and discussions 54 4.5 Summary 64 Chapter 5: Gate-Dependent Relaxation Dynamics in CVD Graphene 66 5.1 Introduction 66 5.2 Experiment setup 68 5.3 Experimental results 70 5.4 Simulation models 79 5.5 Results and discussions 82 5.6 Summary 92 Chapter 6: Conclusions 94 References 97 Appendix A 103 Appendix B 107

    Reference
    1. P.R. Wallace. Physical Review 71 (9), 622 (1947).
    2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov. Science 306 (5296), 666 (2004).
    3. "The Nobel Prize in Physics 2010". Nobelprize.org. Nobel Media AB 2013. Web. 2 Nov 2013.
    4. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim. Reviews of Modern Physics 81 (1), 109 (2009).
    5. G.W. Semenoff. Physical Review Letters 53 (26), 2449 (1984).
    6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov. Nature 438 (7065), 197 (2005).
    7. Y.W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E.H. Hwang, S. Das Sarma, H.L. Stormer and P. Kim. Physical Review Letters 99 (24), 246803 (2007).
    8. Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer and D.N. Basov. Nature Physics 4 (7), 532 (2008).
    9. H. Choi, F. Borondics, D.A. Siegel, S.Y. Zhou, M.C. Martin, A. Lanzara and R.A. Kaindl. Applied Physics Letters 94 (17), 172102 (2009).
    10. V. Ryzhii, M. Ryzhii and T. Otsuji. Journal of Applied Physics 101 (8), 083114 (2007).
    11. G.C. Liang, N. Neophytou, D.E. Nikonov and M.S. Lundstrom. Ieee Transactions on Electron Devices 54 (4), 677 (2007).
    12. J.R. Williams, L. DiCarlo and C.M. Marcus. Science 317 (5838), 638 (2007).
    13. V. Ryzhii, M. Ryzhii and T. Otsuji. Physica Status Solidi C - Current Topics in Solid State Physics, Vol 5, No 1 5 (1), 261 (2008).
    14. T. Ando. Journal of the Physical Society of Japan 75 (12), 124701 (2006).
    15. F. Rana. Physical Review B 76 (15), 155431 (2007).
    16. F. Rana, P.A. George, J.H. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar and M.G. Spencer. Physical Review B 79 (11), 115447 (2009).
    17. S. Butscher, F. Milde, M. Hirtschulz, E. Malic and A. Knorr. Applied Physics Letters 91 (20), 203103 (2007).
    18. J.M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana and M.G. Spencer. Applied Physics Letters 92 (4), 042116 (2008).
    19. H.M. Dong, W. Xu and R.B. Tan. Solid State Communications 150 (37-38), 1770 (2010).
    20. H.N. Wang, J.H. Strait, P.A. George, S. Shivaraman, V.B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M.G. Spencer, C.S. Ruiz-Vargas and J. Park. Applied Physics Letters 96 (8), 081917 (2010).
    21. R.W. Newson, J. Dean, B. Schmidt and H.M. van Driel. Optics Express 17 (4), 2326 (2009).
    22. P.J. Hale, S.M. Hornett, J. Moger, D.W. Horsell and E. Hendry. Physical Review B 83 (12), 121404 (2011).
    23. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn and M. Wolf. Physical Review Letters 95 (18), 187403 (2005).
    24. P.A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana and M.G. Spencer. Nano Letters 8 (12), 4248 (2008).
    25. J.H. Strait, H.N. Wang, S. Shivaraman, V. Shields, M. Spencer and F. Rana. Nano Letters 11 (11), 4902 (2011).
    26. "Graphene-based field-effect transistor structures for terahertz applications", Proc. SPIE 8363, Terahertz Physics, Devices, and Systems VI: Advanced Applications in Industry and Defense
    27. L. Ju, B.S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X.G. Liang, A. Zettl, Y.R. Shen and F. Wang. Nature Nanotechnology 6 (10), 630 (2011).
    28. H.G. Yan, X.S. Li, B. Chandra, G. Tulevski, Y.Q. Wu, M. Freitag, W.J. Zhu, P. Avouris and F.N. Xia. Nature Nanotechnology 7 (5), 330 (2012).
    29. J.A. Yan, W.Y. Ruan and M.Y. Chou. Physical Review B 79 (11), 115443 (2009).
    30. L.B. Huang, B. Gao, G. Hartland, M. Kelly and H.L. Xing. Surface Science 605 (17-18), 1657 (2011).
    31. S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong and S. Iijima. Nature Nanotechnology 5 (8), 574 (2010).
    32. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn and M. Wolf. Physical Review Letters 95 (18) (2005).
    33. K.J. Tielrooij, J.C.W. Song, S.A. Jensen, A. Centeno, A. Pesquera, A.Z. Elorza, M. Bonn, L.S. Levitov and F.H.L. Koppens. Nature Physics 9 (4), 248 (2013).
    34. A.J. Frenzel, C.H. Lui, W. Fang, N.L. Nair, P.K. Herring, P. Jarillo-Herrero, J. Kong and N. Gedik. Applied Physics Letters 102 (11), 113111 (2013).
    35. G. Jnawali, Y. Rao, H.G. Yan and T.F. Heinz. Nano Letters 13 (2), 524 (2013).
    36. A.K. Geim and K.S. Novoselov. Nature Materials 6 (3), 183 (2007).
    37. A. Abbas, M. Karabiyik and N. Pala. Terahertz Physics, Devices, and Systems Vi: Advanced Applications in Industry and Defense 8363, 83630S.1 (2012).
    38. V. Barone, O. Hod and G.E. Scuseria. Nano Letters 6 (12), 2748 (2006).
    39. T. Ando, Y.S. Zheng and H. Suzuura. Journal of the Physical Society of Japan 71 (5), 1318 (2002).
    40. A.B. Kuzmenko, E. van Heumen, F. Carbone and D. van der Marel. Physical Review Letters 100 (11), 117401 (2008).
    41. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres and A.K. Geim. Science 320 (5881), 1308 (2008).
    42. J.M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M.G. Spencer, D. Veksler and Y.Q. Chen. Applied Physics Letters 93 (13), 131905 (2008).
    43. E.H. Hwang and S. Das Sarma. Physical Review B 79 (16), 165404 (2009).
    44. J. Heo, H.J. Chung, S.H. Lee, H. Yang, D.H. Seo, J.K. Shin, U.I. Chung, S. Seo, E.H. Hwang and S. Das Sarma. Physical Review B 84 (3), 035421 (2011).
    45. G.G. Samsonidze, E.B. Barros, R. Saito, J. Jiang, G. Dresselhaus and M.S. Dresselhaus. Physical Review B 75 (15), 155420 (2007).
    46. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, UK (1999)
    47. Alexander Grüneis. Resonance Raman spectroscopy of single wall carbon nanotubes.PhD thesis, Tohoku University, Japan (2004).
    48. J. Hass, F. Varchon, J.E. Millan-Otoya, M. Sprinkle, N. Sharma, W.A. De Heer, C. Berger, P.N. First, L. Magaud and E.H. Conrad. Physical Review Letters 100 (12), 125504 (2008).
    49. X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo and R.S. Ruoff. Science 324 (5932), 1312 (2009).
    50. A. Pachoud, M. Jaiswal, P.K. Ang, K.P. Loh and B. Ozyilmaz. Epl 92 (2), 27001 (2010).
    51. L. J. van der Pauw, “A method of measuring specific resistivity and hall effect of discs of arbitrary shape,” Philips Research Reports 13, 1(1958).
    52. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth and A.K. Geim. Physical Review Letters 97 (18), 187401 (2006).
    53. A.C. Ferrari. Solid State Communications 143 (1-2), 47 (2007).
    54. W.A. de Heer, C. Berger, X.S. Wu, P.N. First, E.H. Conrad, X.B. Li, T.B. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski and G. Martinez. Solid State Communications 143 (1-2), 92 (2007).
    55. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber and T. Seyller. Nature Materials 8 (3), 203 (2009).
    56. J. Wintterlin and M.L. Bocquet. Surface Science 603 (10-12), 1841 (2009).
    57. Q. Wu and X.C. Zhang. Applied Physics Letters 71 (10), 1285 (1997).
    58. M. Vanexter, C. Fattinger and D. Grischkowsky. Optics Letters 14 (20), 1128 (1989).
    59. C.M. Randall and R.D. Rawcliffe. Applied Optics 6 (11), 1889 (1967).
    60. L.A. Falkovsky and A.A. Varlamov. European Physical Journal B 56 (4), 281 (2007).
    61. J. Heo, H.J. Chung and S.H. Lee. Abstracts of Papers of the American Chemical Society 241 (2011).
    62. N. Bonini, M. Lazzeri, N. Marzari and F. Mauri. Physical Review Letters 99 (17), 176802 (2007).
    63. K. Kang, D. Abdula, D.G. Cahill and M. Shim. Physical Review B 81 (16), 165405 (2010).
    64. B.Y. Sun, Y. Zhou and M.W. Wu. Physical Review B 85 (12), 125413 (2012).
    65. V.P. Gusynin, S.G. Sharapov and J.P. Carbotte. New Journal of Physics 11, 095013 (2009).
    66. S. Fratini and F. Guinea. Physical Review B 77 (19), 195415 (2008).
    67. J.H. Chen, C. Jang, S.D. Xiao, M. Ishigami and M.S. Fuhrer. Nature Nanotechnology 3 (4), 206 (2008).
    68. Graphene-based field-effect transistor structures for terahertz applications", Proc. SPIE 8363, Terahertz Physics, Devices, and Systems VI: Advanced Applications in Industry and Defense
    69. C.J. Docherty, C.T. Lin, H.J. Joyce, R.J. Nicholas, L.M. Herz, L.J. Li and M.B. Johnston. Nature Communications 3, 1228 (2012).
    70. C.C. Tang, M.Y. Li, L.J. Li, C.C. Chi and J.C. Chen. Applied Physics Letters 99 (11), 112107 (2011).
    71. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari and A.K. Sood. Nature Nanotechnology 3 (4), 210 (2008).
    72. S. Adam, E.H. Hwang, V.M. Galitski and S. Das Sarma. Proceedings of the National Academy of Sciences of the United States of America 104 (47), 18392 (2007).
    73. Ming-Yang Li, Thesis : Quantum transport in two-dimensional electron system: 1.Transition dynamics in the electrical breakdown of the integer quantum Hall effect 2.Disorder induced scattering in chemical vapor deposited graphene, NTHU, 2013
    74. Q. Wu, M. Litz and X.C. Zhang. Applied Physics Letters 68 (21), 2924 (1996).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE