簡易檢索 / 詳目顯示

研究生: 陳彥溥
Chen, Yen-Pu
論文名稱: 水熱法成長鋰摻雜氧化鋅奈米柱的性質研究
指導教授: 吳振名
Wu, Jenn-Ming
口試委員: 闕郁倫
Chueh, Yu-Lun
葉東昇
Yeh, Tung-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 97
中文關鍵詞: 水熱法鋰摻雜氧化鋅奈米柱
外文關鍵詞: hydrothermal, Li doping, ZnO, nanorods
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此實驗主要探討鋰摻雜氧化鋅奈米柱(Li doped ZnO nanorods)在不同退火溫度、退火氣氛以及不同摻雜濃度下所呈現在電性、表面形貌、晶格常數以及光譜分析下的差異,藉此瞭解鋰離子在氧化鋅晶格所扮演的角色以及此摻雜形成p-type ZnO的可能性。
    實驗方法主要利用磁控濺鍍(Megnetron sputtering)在矽基板、玻璃基板鍍上一層約100奈米的鎵摻雜氧化鋅種子層(GZO),接著利用水熱溶液法(hydrothermal process)成長垂直性良好的鋰摻雜氧化鋅奈米柱,最後將試片置入爐管退火,在不同溫度及不同氣氛下退火。
    檢測方法包含利用FE-SEM觀察奈米柱表面形貌、XRD探討(0002)
    面的強度和偏移趨勢、UV-visible 吸收光譜得出透光率和能隙(band gap)、PL(Photoluminescence)檢測各缺陷能階、柱體表面元素成分分析(XPS)、Raman spectra檢測鍵結種類、AFM量單根奈米柱電性、TEM顯示微結構以及晶格常數。 其結果顯示鋰的摻雜會使得柱體均勻成長且XRD和TEM顯示鋰摻雜氧化鋅奈米柱其結晶方向具有優選性以及有良好的單晶wurtzite結構;UV吸收光譜顯示隨著鋰摻雜濃度上升或是退火溫度上升都會造成氧化鋅能隙變小;低溫 PL顯示在鋰離子的摻雜下,其柱體結晶性會變差;此外PL可得知缺陷的相關資訊,其顯示在不同的氧化鋅生長條件這些缺陷會有不一樣的強度;拉曼光譜分析則推測鋰的摻雜在氧化鋅內形成良好的incorporation,尤其指的是鋰填在鋅的位置上。另外在單根奈米柱電性的I-V量測上, 0.03M鋰摻雜氧化鋅奈米柱(氧氣氛下退火攝氏500度)可能顯現出p-type 性質。


    第一章 緒論 1-1 前言 1-2 研究動機 第二章 文獻回顧 2-1 寬能隙半導體材料介紹 2-2 ZnO 2-3 n-type和p-type ZnO 2-4 ZnO的本質缺陷 2-4-1 鋅空缺 2-4-2 氧空缺 2-4-3 間隙鋅 2-4-4 間隙氧 2-4-5 鋅反晶格 2-4-6 氧反晶格 2-5 ZnO的光學性質 2-5-1 PL 2-5-1-1 UV emission 2-5-1-2 Defects emissions 2-5-2 UV-visible 光譜量測 2-6 水熱法成長氧化鋅奈米柱 2-7 鋰在氧化鋅的理論 2-7-1 LiZn 2-7-2 Lii 第三章 實驗部分 3-1實驗大綱 3-2製備氧化鋅奈米柱 3-2-1 準備矽基板和玻璃基板 3-2-2 磁控濺鍍鍍製GZO 3-2-3 成長氧化鋅奈米柱 3-3 退火處理 3-4 詴片分析和性質量測 3-4-1 X-ray繞射儀(XRD) 3-4-2 掃描式電子顯微鏡(FESEM) 3-4-3 表面化學特性分析(XPS) 3-4-4 原子力顯微鏡(AFM) 3-4-5 低溫螢光光譜分析儀(PL) 3-4-6 拉曼光譜分析(Raman shift) 3-4-7 穿透式電子顯微鏡(TEM) 3-4-8 I-V電性量測 3-4-9 UV-visible吸收光譜 第四章 實驗結果與討論 4-1鋰摻雜氧化鋅奈米柱 4-1-1水熱法成長鋰摻雜氧化鋅奈米柱 4-1-2柱體表面分析檢測鋰相關鍵結軌域(XPS) 4-1-3鋰摻雜與未摻雜柱體成長初期的變化(FE-SEM) 4-1-4 穿透式電子顯微鏡(TEM) 4-2不同鋰摻雜濃度對氧化鋅奈米柱性質的影響 4-2-1晶體結構分析(XRD) 4-2-2 UV-Visible 吸收光譜分析 4-2-3低溫螢光光譜分析(Photoluminescence) 4-2-4 柱體表面氧空缺比例分析(XPS) 4-2-5 Raman spectra 4-3不同退火溫度對鋰摻雜氧化鋅的影響 4-3-1晶體結構分析(XRD) 4-3-2 UV-Visible 吸收光譜分析 4-3-3低溫螢光光譜分析(Photoluminescence) 4-3-4 X柱體表面氧空缺比例分析(XPS) 4-4不同退火氣氛對鋰摻雜氧化鋅奈米柱的影響 4-4-1晶體結構分析(XRD) 4-4-2 UV-Visible 吸收光譜分析 4-4-3低溫螢光光譜分析(Photoluminescence) 4-5鋰摻雜氧化鋅奈米柱的電性量測 第五章 結論 參考文獻

    [1] Monroy E, Omnes F, Calle F. Semicond. Sci. Technol 18,
    R33–R51 (2003).
    [2] Zu P, Tang ZK, Wong GKL, Kawasaki M, Ohtomo A, Koinuma
    K. Solid-State Commun 103, 459-463 (1997).
    [3] Bagnall DM, Chen YR, Zhu Z, Yao T, Koyama S, Shen MY.
    Appl Phys Lett 70, 2230-2232 (1997).
    [4] Wraback M, Shen H, Liang S, Gorla CR, Lu Y. Appl Phys
    Lett 74, 507-509 (1999).
    [5] Lee JM, Kim KK, Park SJ, Choi WK. Appl Phys Lett 78,
    3842-3844 (2001).
    [6] Kucheyev SO, Bradley JE, Williams JS, Jagadish C, Swain
    MV. Appl Phys Lett 80, 956-958 (2002).
    [7] Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA,
    Doğan S, Avrutin V, Cho SJ, Morkoç H. Journal of
    Applied Physics 98, p.041301-1~041301-103 (2005).
    [8] Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T.
    Progress in Materials Science 50, 293–340 (2005).
    [9] Kato H, Sano M, Miyamoto K, Yao T, Cryst J. Growth 237,
    538-543 (2002).
    [10]Myong SY, Baik SJ, Lee CH, Cho WY, Lim KS, Jpn. J.
    Appl. Phys Part2 36, L1078-L1081 (1997).
    [11]Ataev BM, Bagamadova AM, Djabrailov AM, Mamedo VV,
    Rabadanov RA. Thin Solid Films 260, 19-20 (1995).
    [12]Florescu D, Mourok LG, Pollack FH, Look DC, Cantwell
    G, Li X. J. Appl Phys 91, 890-892 (2002).
    [13]Laks DB, Van de Walle CG, Neumark GF, Pantelides ST.
    Materials Science Forum 83-87, 1225-1234 (1992).
    [14]Neumark GF. Phys. Rev. Lett 62, 1800-1803 (1989).
    [15]Van de Walle CG, Laks DB, Neumark GF, Pantelides ST.
    Phys. Rev. B 47, 9425-9434 (1993).
    [16]Lu JG, Zhang YZ, Ye ZZ, Zeng YJ, He HP, Zhu LP, Huang
    JY, Wang L, Yuan J, Zhao BH, Li XH. APPLIED PHYSICS
    LETTERS 89, 112–113 (2006).
    [17]Wang DY, Zhou J, Liu GZ. Journal of Alloys and
    Compounds 481, 802–805 (2009).
    [18]Zeng YJ, Ye ZZ, Lu JG, Xu WZ, Zhu LP, Zhao BH.
    APPLIED PHYSICS LETTERS 89, 042106 (2006).
    [19]Kanai Y. Jpn. J. Appl. Phys., Part 1 30, 703-707
    (1991).
    [20]Kanai Y. Jpn. J. Appl. Phys, Part 1 30, 2021-2022
    (1991).
    [21]Park CH, Zhang SB, Wei SH. Phys Rev B 66, 073202
    (2002).
    [22]Yamamoto T, Katayama-Yoshida H. Jpn J Appl Phys 38,
    L166-L169 (1999).
    [23]Duclere JR, Novotny M, Meaney A, O'Haire R, McGlynn E,
    Henry MO, Mosnier, JP. SUPERLATTICES AND
    MICROSTRUCTURES 38, 397-405 (2005)
    [24]Look DC, Jones RL, Sizelove JR, Garces NY, Giles NC,
    Halliburton LE. Phys. Status Solidi A 195, 171-177
    (2003).
    [25]Chen LL, He HP, Ye ZZ, Zeng YJ, Lu JG, Zhao BH, Zhu LP.
    Chemical Physics Letters 420, 358–361 (2006).
    [26]Cong GW, Peng WQ, Wei HY, Han XX, Wu JJ, Liu XL,
    Zhu QS, Wang ZG. APPLIED PHYSICS LETTERS 88, 062110
    (2006).
    [27]Zhang BY, Yao B, Li YF, Zhang ZZ, Li BH, Shan CX, Zhao
    DX, Shen DZ. APPLIED PHYSICS LETTERS 97, 222101
    (2010).
    [28]Lu JG, Zhang YZ, Ye ZZ, Zhu LP, Wang L, Zhao BH.
    APPLIED PHYSICS LETTERS 88, 222114 (2006).
    [29]Wanga XH, Yao B, Shena DZ, Zhanga ZZ, Lia BH, Weia ZP,
    Lua YM, Zhaoa DX, Zhanga JY, Fana XW, Guanc LX, Congc
    CX. Solid State Communications 141, 600–604 (2007).
    [30]Das SN, Choi JH, Kar JP, Lee TI, Myoung JM. Materials
    Chemistry and Physics 121, 472–476 (2010).
    [31]Janotti A, Van de Walle CG. PHYSICAL REVIEW B 76,
    165202 (2007).
    [32]Lukas SM, MacManus-Driscoll JL. materialstoday 10, 40-
    48 (2007).
    [33]Djurisic Aleksandra B, Leung Yu Hang. SMALL 2, 944 –
    961 (2006).
    [34]Majumdar S, Banerji P. Superlattices and
    Microstructures 45, 583–589 (2009).
    [35]Zeng YJ, Ye ZZ, Xu WZ, Chen LL, Li DY, Zhu LP, Zhao BH,
    Hu YL. Journal of Crystal Growth 283, 180–184 (2005).
    [36]Gupta MK, Kumar B. Journal of Alloys and Compounds 509,
    L208–L212 (2011).
    [37]Dutta T, Gupta P, Gupta A, and Narayan J. JOURNAL OF
    APPLIED PHYSICS 108, 083715 (2010).
    [38]Qiu JJ, Li XM, He WZ, Park SJ, Kim HK, Hwang YH, Lee
    JH, Kim YD. Nanotechnology 20, 155603 (2009).
    [39]Li QW, Bian JM. Applied Surface Science 256, 1698-1702
    (2010).
    [40]Ma T, Guo M. Nanotechnology 18, 035605 (2007).
    [41]Wang SF, Tseng TY, Wang YR, Wang CY, Lu HC, Shih WL.
    International Journal of Applied Ceramic Technology 5,
    419-429 (2008).
    [42]Wardle MG, Goss JP, Briddon PR. PHYSICAL REVIEW B 71,
    155205 (2005).
    [43]Srinivasan G, Kumar RTR, Kumar J. J. Sol-Gel Sci.
    Technology 43, 171–177 (2007).
    [44]Ahsanulhaq Q, Umar A, Hahn TB. Nanotechnology 18,
    115603 (2007).
    [45]Nayak PK, Jang J, Lee C, Hong Y. APPLIED PHYSICS
    LETTERS 95, 193503 (2009).
    [46]Lin YJ, Wang MS , Liu CJ, Huang HJ. Applied Surface
    Science 256, 7623–7627 (2010).
    [47]Jeong SH, Park BN, Lee SB, Boo JH. Thin Solid Films
    516, 5586– 5589 (2008).
    [48]Majumdar S, Banerji P. Superlattices and
    Microstructures 45, 583–589 (2009).
    [49]Ghosh T, Basak D. J. Phys. D: Appl. Phys. 42, 145304
    (5pp) (2009).
    [50]Dutta T, Gupta P, Gupta A, Narayan J. JOURNAL OF
    APPLIED PHYSICS 108, 083715 (2010).
    [51]Gupta MK, Kumar B. Journal of Alloys and Compounds 509,
    L208–L212 (2011).
    [52]Wang XH, Yao B, Wei ZP, Sheng DZ, Zhang ZZ, Li BH, Lu
    YM, Zhao DX, Zhang JY, Fan XW, Guan LX, Cong CX. J.
    Phys. D: Appl. Phys. 39, 4568–4571(2006).
    [53]Meyer BK, Alves H, Hofmann DM, Kriegseis W, Forster D,
    Bertram F, Christen J, Hoffmann A, Straßburg M, Dworzak
    M, Haboeck U, Rodina AV. phys. stat. sol. 241, 231–260
    (2004).
    [54]Rauch C, Gehlhoff W, Wagner MP, Malguth E, Callsen G,
    Kirste R, Salameh B, Hoffmann A, Polarz S, Aksu Y,
    Driess M. JOURNAL OF APPLIED PHYSICS 107, 024311
    (2010).
    [55]Kirste R, Aksu Y, Wagner MR, Khachadorian S, Jana S,
    Driess M, Thomsen C, Hoffmann A. Chem Phys Chem 12,
    1189 – 1195 (2011).
    [56]Chawla S, Jayanthi K, Kotnala RK. PHYSICAL REVIEW B 79,
    125204 (2009).
    [57]Wu KY, Fang QQ, Wang WN, Zhou C, Huang WJ, Li JG, Lv
    QR, Liu YM, Zhang QP, Zhang HM. JOURNAL OF APPLIED
    PHYSICS 108, 063530 (2010).
    [58]Major S, Kumar S, Bhatnagar M, Chopra KL. Applied
    Physics Letters 49, 394-396 (1986).
    [59]Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF,
    Wen LS. Applied Surface Science 158, 134-140 (2000).
    [60]Lai LW and Lee CT. Materials Chemistry and Physics 110,
    393-396 (2008).
    [61]Ye JD, Gu SL, Zhu SM, Chen T, Liu W, Qin F, Hu LQ,
    Zhang R, Shi Y, Zheng YD. J. Vac. Sci. Technol. A 21,
    979-982 (2003).
    [62]Polarz S, Orlov A, Hoffmann A, Wagner MR, Rauch C,
    Kirste R, Gehlhoff W, Aksu Y, Driess M, an Den Berg
    MWE, Lehmann M. Chem. Mater 21, 3889–3897 (2009).
    [63]Lin BX, Fu ZX, Jia YB. APPLIED PHYSICS LETTERS 79, 943-
    945 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE