研究生: |
陳雅姿 Chen, Ya-tzu |
---|---|
論文名稱: |
應用市場微結構於購併宣告前後訊息之研究 The application of Microstructure to the investigation of M&A informed-based trading |
指導教授: |
吳儀玲
Wu, Yi-Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 計量財務金融學系 Department of Quantitative Finance |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 28 |
中文關鍵詞: | 公司購併 、市場微結構 、訊息交易比例 、現金併購 、股票併購 |
外文關鍵詞: | Microstructure, informed-based trading, M&A |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在完全競爭市場,交易訊息應是對稱透明化。但在現實世界中,資訊並沒有達到雙面均衡。企業併購即為訊息不對稱的一個很好例子。企業併購宣告後,大眾投資人對被收購公司信心大增,股價大漲。因此在宣告併購前掌握訊息,將有套利機會。Meulbroek在1992年提出,美國違法內線交易事件,併購佔極大的比例。而避險基金套利型策略中,也有風險併購套利(併購宣告前,買進將被收購的公司,賣出購併者)。因此公司併購宣告前,是否有內部消息投資者已在市場上交易。
Easley, Hvidkjaer, and O’Hara (2002)提出市場微結構模型,利用交易與報價資料,算出訊息交易比例(PIN, the probability of information-based trading),估計是否有投資者有掌握內部訊息。在市場微結構模型,需有買單跟賣單資料,估計訊息交易比例參數。採用Lee and Ready (1991)提出利用報價資料,分辨買賣單。Lee and Ready方法,在2002年Declerck驗證只有4.5%分類失誤,因此估出的訊息交易比例受到分類失誤的影響很小。
本論文採用Easley, Hvidkjaer, and O’Hara (2002)提出市場微結構模型,利用收購公司在併購宣告與目標公司下市日前後交易與報價資料,算出訊息交易比例(PIN, the probability of information-based trading),藉此看出,是否有不正常的交易活動,隱含內部交易訊息。
實證結果發現,併購事件中的買方公司─併購公司,在宣告日前並沒有私有訊息擁有者進入市場交易,而對於一般認為以現金為併購手段所帶來的財富效果,在研究中並沒有發現此效果。而目標公司在宣告日前,確有私有訊息擁有者進入市場交易,進入時間點在宣告日前三個月。。
In complete market, the information is symmetry. But in the real world, the information is usually asymmetric. M&A is a good example of information asymmetry. After M&A is announced, stock price of the target company usually increases significantly. If the investors acquire private information before the M&A announcement date, they can profit from the private information. The M&A arbitrage hedge fund implements the trading strategy of buying the potential target company and at the same time selling the acquiring firms prior to the M&A announcement date. Meulborek (1992) analyzes that the illegal inside trading cases in America are most M&A.
Easley, Hvidkjaer, and O’Hara (2002) have established stock market microstructure model to infer the probability of information-based trading (PIN) from transaction and quote data. We employ Lee and Ready (1991) to distinguish between buy-order-driven transactions and sale-order-driven transactions.
The paper applies the microstructure model established by Easley, Hvidkjaer, and O’Hara (2002) to infer the probability of information-based trading before the announcement of M&A. The purpose of this paper is we aim to investigate whether there are, if any, information-based trading prior to the announcement of M&A.
David Easley,Soeren Hvidkjaer, and Maureen O’Hara,2002,Is Information Risk a Determinant of Asset Returns? , Journal of Finance Vol LvII, No.5 2185-2221
Easley, David, Nicholas M. Kiefer, and Maureen O'Hara, 1996a, Cream-skimming or profit- sharing? The curious role of purchased order flow, Journal of Finance 51, 811-833.
Easley, David, Nicholas M. Kiefer, and Maureen O'Hara, 1997a, The information content of the trading process, Journal of Empirical Finance 4, 159-186.
Fama, Eugene F., and Kenneth R. French, 1992, The cross section of expected stock returns, Journal of Finance 47, 427-465.
Fama, Eugene F., and James D. MacBeth, 1973, Risk, return, and equilibrium: Empirical tests, Journal of Political Economy 81, 607-636. Grossman, Sanford, and Joseph Stiglitz, 1980, On the impossibility of information
Heidle, H., Huang, R., 2002. Information-based trading in dealer and auction markets: an analysis of exchange listings. Journal of Financial and Quantitative Analysis 37, 391–425.
Keown, A., Pinkerton, J., 1981. Merger announcement and insider trading activity: an empirical investigation. Journal of Finance 36, 855–869.
Mark Mitchell,Todd Pulvino,Erik Stafford, 2004 ,Price Pressure around Mergers. Journal of Finance,Vol59,No.1,(Feb.,2004),pp.31-63
Meulbroek, L., 1992. An empirical analysis of illegal insider trading. Journal of Finance 47, 1661–1699.
Nihat Aktas,, Eric de Bodt, Fany Declerck, Herv□ Van Oppens , 2007 , The PIN anomaly around M&A announcements. Journal of Financial Market 10(2007) 169-191
Theissen, E., 2000. A test of the accuracy of the Lee/Ready trade classification algorithm. Journal of International Financial Markets, Institutions and Money 11, 147–165.