研究生: |
張馨勻 |
---|---|
論文名稱: |
利用光注入半導體雷射週期一振盪區於距離與速度之量測 Ranging and Velocity Detection using Period-One Oscillations in an Optically Injected Semiconductor Laser |
指導教授: | 林凡異 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 雷射 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,以模擬分析方式,利用半導體雷射的非線性動態特性,以光注入(optical injection)
系統作為測距與測速之應用。光注入系統主要含有一組雷射,分別是一個主雷射與一個副雷射。
在適當的操作下,得以產生不同的動態與特性。其動態包含有穩定鎖定(stable locking)狀態,
混沌振盪(chaotic oscillation, CO)狀態,週期一振盪(period-one, P1)狀態 ,週期二振
盪(period-two, P2)狀態,以及其他高週期振盪狀態。本論文將藉著操作光注入系統於週期一振
盪狀態,作為雷達量測距離與量測速度之應用。
在測距方面,分別以直接光注入強度調變方式與間接注入強度調變方式,產生線性的啾頻訊
號(linearly chirped signal)。利用線性的啾頻訊號,藉著反射訊號與參考訊號混波後產生的
差頻,即可以確定待測目標的距離。差頻在頻譜上會具有線寬(linewidth),此線寬會影響距離
解析度,因此,本論文探討調變頻寬(bandwidth),調變週期(period),以及雜訊(noise)對於線寬
與距離解析度的影響。根據模擬結果,直接光注入強度調變結構的距離解析度最佳可以達到0.753 m,
而間接注入強度調變結構的距離解析度最佳可以達到1.087 m。此兩結構相較下,直接光注入強度
調變結構的距離解析度是優於間接光注入強度調變結構的距離解析度。
在測速方面,根據都卜勒效應(Doppler effect),運動中的目標物會造成反射訊號與發射訊號
頻率上的不同,稱之為都卜勒頻移(Doppler shift)。利用都卜勒頻移,則可以確定移動物體的速度。
在速度解析度評估分析上,藉由double-lock的技術,使用MSF(microwave frequency synthesizer),
可以有效將頻譜上的線寬減小。根據文獻記錄,在合理假設下,評估此測速系統的速度解析度最佳可以
達到4.5 μm/s。另外,本論文探討以弦波與三角波週期性運動的物體,其運動的振幅與雷射輸出
光波長之比值大小對於頻譜上,正確判斷都卜勒頻移大小的影響。
We numerically simulated signal generation for range and velocity detecction utilizing
optically injected (OI) system. OI system consists of a master laser and a slave laser.
By tuning the operating parameters, the optically injected semiconductor laser can be
operated in different instable regions. There are stable-locking, chaotic oscillation (CO),
period-one oscillation (P1), period-two oscillation (P2) and high order oscillation regions.
We research the radar for range and velocity detection with P1 state.
For range detection, two schemes will be used to generate linearly chirped signal. One
is directly modulating the injection strength of slave laser, and the other is indirectly
modulating the injection strength of slave laser. After mixing transmitting signal and
refected signal, the mixing signal can be used to evaluate the range of the target. We
investigate the effect of bandwidth, period, and noise on the linewidth that determinates
the resolution of the signal. By simulation, the resloution is 0.753 m utilizing directly
modulating the injection strength of slave laser, and the resolution is 1.087 m utilizing
indirectly modulating the injection strength of slave laser. In comparison, the resolution
of the former is better than the latter.
For velocity detection, there is Doppler-shift frequency when the target is moving, and
we can evaluate the velocity of the target. By double-lock technology, the linewidth can
be reduced with MSF. We evaluate that the resolution is 4.5 μm/s with the hypotheses.
When the target moves sinusoidally or as a triangular wave, we research the relation
between Doppler-shift frequency and the ratio of the target moving amplitude and the
mircowave wavelength.
[1] M. C. Amann, M. Lescure, R. Myllyla, and M. Rioux,” Laser ranging: a critical
review of usual techniques for distance measurement,”Opt. Eng., vol. 40, No. 1, pp.
10-19, Jan. 2001.
[2] J. D. McClure, ”Diode laser radar: application and technology,”SPIE Laser-Diode
Technology and Application II, vol. 1219, pp. 446-456, 1990.
[3] Katuo SETA and Tadanao OH’ISHI, ”Distance measurement using a pulse train
emitted from a laser diode,”J. Applied Physics, vol. 26, No. 10, pp. L1690-L1692,
Oct. 1987.
[4] H. D. Griffiths, ”New ideas in FM radar,”Electronics and Communication Engineering
Journal, pp. 185-194, 1990.
[5] S. F. Collins, W. X. Huang, M. M. Murphy, K. T. V. Grattan, and A.W. Palmer, ”A
simple laser diode ranging scheme using an intensity modulation FMCW approach,”
Meas. Sci. Technol., vol.4, pp. 1437-1439, 1993.
[6] B. L. Stann, W. C. Ruff, and Z. G. Sztankay, ”Intensity-modulated diode laser radar
using frequency-modulation/continuous-wave ranging techniques,”Opt. Eng., vol.35,
pp. 3270-3278, 1996.
[7] A. Dieckmann, ”FMCW-LIDAR with tunable twin-guide laser diode,”Electronics
Letters, vol. 30, No. 4, pp. 308, 1994.
[8] A. G. Stove, ”Linear FMCW Radar Techniques,”IEE Proceedings, vol.139, pp. 343-
350, 1992
[9] A. G. Stove, ”Modern FMCW radar - Techniques and applications,”Proc. Eur. Radar
Conf., Amsterdam, pp. 149-152, 2004.
[10] B. Journet and G. Bazin, ”A low-cost range finder based on an FMCW-like method,”
IEEE Transactions on Instrumentation and Measurement, vol. 49, pp. 840-843, 2000.
[11] R. T. Menzies and R. M. Hardesty, ”Coherent Doppler lidar for measurements of
wind fields,” IProc. IEEE77, 3, pp. 449-462, 1989
[12] H. W. Mocker and P. E. Bjork, ”High accuracy laser Doppler velocimeter using stable
long-wavelength semiconductor lasers,”Appl. Opt., 28, 22, pp. 4914-4919, 1989.
[13] W. L. Eberhard and R. M. Schotland, ”Dual-frequency Doppler-lidar method of
wind measurement,”Appl. Opt., 19, 17, pp. 2967-2976 , 1980.
[14] J. D. McClure, ”Diode Laser Radar Applications and Technology,”Proc. SPIE, Laser
Diode Technology and Applications IT, vol. 1219, pp. 446-456, 1990.
[15] S. K. Hwang and J. M. Liu, ” Dynamical characteristics of an optically injected
semiconductor laser,”Optics Comm., vol. 183, pp. 195-205, 2000.
[16] J. S. Lawrene and D. M. Kane, ”Injection locking suppression of coherence collapse
in a diode laser with optical feedback,”Optics Comm., vol. 167, pp. 273-282, 1999.
[17] S. Tang and J. M. Liu. ”Chaotic pulsing and quasi-period route to chaos in a semiconductor
l aser with delayed opto-electronic feedback,”IEEE J. Quantum Electron.,
vol. 37, pp. 329-336, 2001.
[18] T. B. Simpson, J. M. Liu, and A. Gavrielides, ”Small-signal analysis of modulation
characteristics in semiconductor laser subject to strong optical injection,” IEEE J.
Quantum Electron., 32, pp. 1456-1468, 1996.
[19] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, ”Perioddoubling
route to chaos in a semiconductor laser subject to optical injection,”Appl.
Phys. Lett., 64, 26, pp. 3539-3541, 1994.
[20] F. Y. Lin and J. M. Liu, ”Chaotic lidar”,IEEE J. of Select Topic in Quantum Electron,
vol. 40, no. 6, pp. 815-820, 2004.
[21] F. Y. Lin and J. M. Liu, ”Diverse waveform generation using semiconductor lasers
for radar and microwave applications,”IEEE J. of Quantum Electron., vol. 40, no 6,
pp. 682-689, 2004.
[22] F. Y. Lin and J. M. Liu, ”Chaotic radar using nonlinear laser dynamics,” IEEE J.
Quantum Electron., vol. 40, pp. 815-820, 2004.
[23] J. M. Liu, H. F. Chen, and S. Tang, ”Optical-communication systems based on chaos
in semiconductor lasers,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 1475-1483.
[24] J. M. Liu, H. F. Chen, and S. Tang, ”Synchronized chaotic optical communications
at high bit rates,” IEEE J. Quantum Electron. vol. 30, pp. 1184-1196, 2002.
[25] S. Tang, H. F. Chen, and J. M. Liu, ”Message encoding and decoding through chaos
modulation in chaotic optical communications,”IEEE Trans. Circuits Syst. I, vol.
49, pp. 163-169, 2002.
[26] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, ”Perioddoubling
cascades and chaos in a semiconductor laser with optical injection,”Phys.
Rev. A, vol. 51, pp. 4181-4185, 1995.
[27] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, ”Nonlinear dynamics induced
by external optical injection in semiconductor lasers,”Quantum Semiclass. Opt., 9,
pp. 765-784, 1997.
[28] V. Kovanis, A. Gavrielides, T. B. Simpson, and J. M. Liu, ”Instabilities and chaos
in optically injected semiconductor lasers,” Appl. Phys. Lett. vol. 64, pp. 2780-2782,1995
[29] J. M. Liu and T. B. Simpson, ”Four-wave mixing and optical modulation in a semiconductor
laser,”IEEE J. Quantum Electron., vol. 4, pp. 957-965, 1994.
[30] J. M. Liu and T. B. Simpson, ”Characterization of fundamental parameters of a
semiconductor laser with an injected optical probe,”IEEE Photon. Technol. Lett.,
vol. 4, pp. 380-382, 1993.
[31] R. N.Watts and C. E.Wieman, ”The production of a highly polarized atomic cesium
beam,”Opt. Commun., 57, pp. 45-48, 1986.
[32] K. S. Repasky, P. A. Roos, L. S. Meng, and J. L. Carlsten, ”Amplified output of a
frequency chirped diode source via injection locking, ” Opt. Eng., 40, pp. 2505-2509,
2001.
[33] B. Boggs, C. Greiner, T.Wang, H. Lin, and T.W. Mossberg, ”Simple high-coherence
rapidly tunable external-cavity diode laser,”Opt. Lett., 23, pp. 1906-1908, 1998.
[34] L. Menager, L. Caberet, I. Lorgere, and J. L. Gouet, ”Diode laser extended cavity
for broad-range fast ramping,”Opt. Lett., 25, pp. 1246-1248, 2000.
[35] L. Levin, ”Mode-hop-free electro-optically tuned diode laser,”Opt. Lett., 27, pp. 237-
239, 2002.
[36] J. Troger, L. Thevenaz, and P. Robert,”Frequency-sweep generation by resonant
self-injection locking,”Opt. Lett., 24, pp. 1493-1495, 1999.
[37] R. R. Reibel, Z. Barber, M. Tian, W. R. Babbit, Z. Cole, and K. D. Merkel, ”Amplification
of high-bandwidth phasemodulated signals at 793 nm,”J. Opt. Soc. Am.
B, 19,pp. 2315-2321, 2002.
[38] L. Thevenaz, S. Le Floch, D. Alasia, and J. Troger, ”Novel schemes for optical signal
generation using laser injection locking with application to Brillouin sensing,”Meas.
Sci. Technol., 15, pp. 1519-1524, 2004.
[39] C. E. Rogers III, M. J. Wright, J. L. Carini, J. A. Pechkis, and P. L. Gould, ”Generation
of arbitrary frequency chirps with a fiber-based phase modulator and selfinjection-
locked diode laser,”J. Opt. Soc. Am. B, 24, pp. 1249-1253, 2007.
[40] C. H. Henry, ”Theory of the linewidth of semiconductor lasers”, IEEE J. Quantum.
Electron., 18, 2, pp. 259, 1982.
[41] S. C. Chan and J. M. Liu, ”Tunable narrow-linewidth photonic microwave generation
using semiconductor laser dynamics,”IEEE J. Sel. Top. Quantum Electron., 10, 5,
pp. 1025-1032, 2004.
[42] T. B. Simpson and F. Doft, ”Double-locked laser diode for microwave photonics
applications,”IEEE Photon.Technol. Lett., 11, 11, pp. 1476-1478, 1999.
[43] R. Diaz, S. C. Chan, and J. M. Liu, ”Dual-frequency multifunction lidar,”Proc. of
SPIE, vol. 6457, 64570O 1-10, 2007.
[44] R. Diaz, S. C. Chan, and J. M. Liu, ”Lidar detection using a dual-frequency
source,”Opt. Lett., 31, 24, pp. 3600-3602, 2006.
[45] A. G. Stove, ”Modern FMCW radar - techniques and applications”,Radar Conference,
pp. 149- 152, 2004.
[46] M. Bhattachalya, A. K. Saw, and T. Chattopadhyay, ”Microwave/mm-wave generation
and its phase control by optical techniques”,IEEE, vol. 2, pp. 777- 779, 2003.
[47] XS Yao and L. Maleki, ”Optoelectronic microwave oscillator”,J. Opt. Soc. Am. B,
pp. 1725-1735, 1996.
[48] D. G. Macfarlane, and D. A. Robertson, ”Long range, high resolution 94GHz FMCW
imaging radar (AVTIS),”30th Intl.Conf. Infrared and MM Waves, pp. 201-202, 2005.
[49] S. O. Piper, ”FMCW range resolution for MMW seeker applications”,Southeastcon
’90. Proceedings. IEEE, vol. 1, pp. 156-160, 1990
[50] B. L. Stann, W. C. Ruff, and Z. G. Sztankay, ”Intensity-modulated diode laser radar
using frequency-modulation/continuous-wave ranging techniques,”Opt. Eng., vol.35,
pp. 3270-3278, 1996.
[51] A. Asensio-L’opez, A. Blanco-del-Campo, J. Gismero-Menoyo, D. Ramirez-Moran,
G. Torregrosa-Penalva, B. Pablo Dorta-Naranjo, and C. Carmona-Duarte, ”High
Range-Resolution Radar Scheme for Imaging with Tunable Distance Limits,”IEE
Electronic Letters, no. 40, pp. 1085-1086, August, 2004.
[52] Koichi IIYAMA, Makoto YASUDA, and Saburo TAKAMIYA, ”Extended-Range
High-Resolution FMCW Reflectometry by Means of Electronically Frequency-
Multiplied Sampling Signal Generated from Auxiliary Interferometer,”IEICE Trans
C: Electronics, E89-C, 6, pp. 823-829, June 1, 2006.
[53] S. Kim and C. Nguyen, ”Millimeter-wave Doppler velocimetry for low-velocity measurement,”
Accepted for IEEE MTT-S Int. Microwave Symp. Digest, pp. 663-666,
2004.
[54] B. D. Pollard and G. Sadowy, ”Next Generation Millimeter-wave Radar for Safe
Planetary Landing,”IEEE Aerospace Conference, 1188, pp. 1213-1219, 2005.
[55] H. W. Mocker and P. E. Bjork, ”High accuracy laser Doppler velocimeter using stable
long-wavelength semiconductor lasers,”Appl. Opt., 28, 22, pp. 4914-4919, 1989.