簡易檢索 / 詳目顯示

研究生: 張廷暉
Chang, Ting-Hui
論文名稱: The CR Bochner Identity and Stable Pseudoharmonic Maps on Pseudohermitian Manifolds
指導教授: 張樹城
Chang, Shu-Cheng
張德健
Chang, Der-Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 80
中文關鍵詞: 包克納恆等式能量密度擬調和映射擬埃爾米特流型擬埃爾米特瑞奇張量擬埃爾米特扭率柯西-黎曼 外森比克公式海森堡群次拉普拉斯測地線熱核
外文關鍵詞: Bochner identity, energy density, pseudoharmonic map, pseudohermitian manifold, pseudohermitian Ricci tensor, pseudohermitian torsion, CR Weitzenböck formula, Heisenberg group, sublaplacian, geodesics, heat kernel
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract

    In this thesis, the CR Bochner identity for energy density of a pseudoharmonic map is obtained in chapter 2, and we are able to find some interesting applications.

    In chapter 3, we derive the CR Weitzenböck formula for 1-forms. By applying this formula, we are able to obtain a vanishing theorem.

    In chapter 4, we derive the second variational formula for pseudoharmonic maps and solve a conjecture ([DT]) that any stable horizontal pseudoharmonic map φ from the pseudohermitian sphere S^3 into any Riemannian manifold N^m must be a constant map.

    In chapter 5, we first derive the CR Lichnerowicz formula for a pseudohermitian spin^c manifold (M^(2n+1), J, θ). By a conformal transformation θ ̂=e^2u θ, where u is a positive real smooth function, we are able to have a lower bound for the first eigenvalue λ of the Dirac operator D_H on a 3-dimensional, closed pseudohermitian spin^c manifold. The uniform lower bound is 4μ_1, where μ_1 is the first eigenvalue
    of the CR Yamabe operator.

    In chapter 6, we will consider the product space H_1 × H_1, where H1 denotes the Heisenberg group, which is an example of pseudohermitian manifolds. We will investigate the geodesics and find the heat kernel on the product space H_1 × H_1.


    Contents 1 Introduction 7 2 The CR Bochner Identity and Its Applications 11 2.1 Introduction 11 2.2 The CR Bochner Identity for the Energy Density 13 2.3 Applications of the CR Bochner Identity 16 3 The CR Weitzenb¨ock Formula 25 3.1 Introduction 25 3.2 The CR Weitzenb¨ock Formula 26 3.3 An Application of the CR Weitzenböck Formula 30 4 Stable Horizontal Pseudoharmonic Maps 35 4.1 The Second Variational Formula for Pseudoharmonic Maps 35 4.2 A Result of Stable Horizontal Pseudoharmonic Maps 38 5 A Lower Bound for the First Eigenvalue of the Dirac Operator 43 5.1 Introduction 43 5.2 The CR Lichnerowicz Formula 44 5.3 A Conformal Lower Bound for the First Eigenvalue 48 6 Geometric Mechanics on Product Heisenberg Groups 55 6.1 Introduction 55 6.2 SubRiemannian Geodesics 56 6.3 The Heat Kernel on H1 × H1 69

    Bibliography

    [BDU] E. Barletta, S. Dragomir and H. Urakawa, Pseudoharmonic Maps from
    Nondegenerate CR Manifolds to Riemannian Manifolds, IUMJ Vol. 50 (2001), 719-746.
    [BCT] C. Berenstein, D.C. Chang and J. Tie, Laguerre Calculus and Its Appli-cations in the Heisenberg Group, AMS/IP series in advanced mathematics #22, International Press, Cambridge, Massachusetts, ISBN 0-8218-2761-8, 2001.
    [BG] R. Beals and P.C. Greiner, Calculus on Heisenberg manifolds, Ann. Math. Studies #119, Princeton University Press, Princeton, New Jersey, 1988.
    [BGG1] R. Beals, B. Gaveau and P.C. Greiner, Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians, I, II, III, Bull. Sci. Math., 21(1997), 1-36, 97-149, 195-259.
    [BGG2] R. Beals, B. Gaveau and P.C. Greiner, Hamilton-Jacobi theory and the heat kernel on the Heisenberg groups, J. Math. Pur. Appl., 79, #7(2000), 633-689.
    [BGG3] R. Beals, B. Gaveau and P.C. Greiner, On a geometric formula for the fundamental solution of subelliptic Laplacians, Math. Nachr., 181(1996), 81-163.
    [C] W.L. Chow, Uber Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117(1939), 98-105.
    [CCC] S.-C., Chang, J.-H. Cheng and H.-L. Chiu : The Fourth-order Qcurvature
    flow on a CR 3-manifold, Indiana Univ. Math. J., Vol. 56, No. 4 (2007), 1793-1826.
    [CaC] J. Cao and S.-C., Chang, Pseudo-Einstein and Q-Flat Metrics with Eigenvalue Estimates on CR-Hypersurfaces, Indiana Univ. Math. J., Vol. 56, No. 6 (2007), 2840-2857.
    [CC1] S.-C. Chang and H.-L. Chiu, Nonnegativity of CR Paneitz operator and its Application to the CR Obata’s Theorem in a Pseudohermitian (2n+1)-Manifold, Journal of Geometric Analysis, Vol. 19 (2009), 261-287.
    [CC2] S.-C. Chang and H.-L. Chiu, On the CR Analogue of Obata’s Theorem in a Pseudohermitian 3-Manifold, Math. Ann. Vol. 345, No. 1 (2009), 33-51.
    [CCG1] O. Calin, D.C. Chang and P. Greiner: Geometric Analysis on the Heisen-
    berg Group and Its Generalizations, AMS/IP series in Advanced Mathematics, #40, International Press, Cambridge, Massachusetts, ISBN-10: 0-8218-4319-2, 2007.
    [CCG2] O. Calin, D.C. Chang and P. Greiner: Geometric Analysis on the Heisenberg
    Group, Bull. Acad. Sinica, 33, #3(2005), 185-252.
    [CCH] D.C. Chang, T.H. Chang and J. Hu: Geometric Mechanics on Product Heisenberg Groups, Appl. Anal. 88(2009), no. 2, 243-283.
    [CCL] S.-C. Chang, D. Chen and H. Li, Some Nonexistence Theorems for Pseudoharmonic Mappings, 2009, preprint.
    [CCM] O. Calin, D.C. Chang and I. Markina, Generalized Hamilton-Jacoby equation and heat kernel on step two nilpotent Lie groups, to appear in Analysis and Math. Phys. Proceedings of the conference ‘New trends in harmonic and complex analysis’, Voss, 2007, Birchauser-Verlag, 2009.
    [CG1] D.C. Chang and P. Greiner, Analysis and geometry on Heisenberg groups, “Proceedings of Second International Congress of Chinese Math-ematicians”, New Studies in Advanced Mathematics, International Press, (Ed. C. Lin and S.T. Yau), 379-405, (2004).
    [CG2] D.C. Chang and P. Greiner, Subelliptic PDEs and subRiemannian geometry,
    to appear in the “Proceedings of Third International Congress of Chinese Mathematicians”, AMS/IP Studies in Advanced Mathematics, 42, International Press, 223-237, (2008).
    [CG3] D.C. Chang and P. Greiner, Fundamental solutions for Kohn Laplacians on a family of pseudoconvex hypersurfaces, book in preparation, 2007.
    [CMV] D.C. Chang, I. Markina, and A. Vasil´ev, Sub-Lorentzian Geometry on Anti-De Sitter Space, J. Math. Pures Appl., 90(2008), 82-110.
    [CT] D.C. Chang and J. Tie, Estimates for powers of sub-Laplacian on the non-isotropic Heisenberg group, J. Geom. Anal., 10(2000), 653-678.
    [DT] S. Dragomir and G. Tomassini, Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, 246. Birkhauser Boston, Inc., Boston, MA, 2006. xvi+487 pp.
    [ES] J. Eells and J. H. Sampson, Harmonic Mappings of Riemannian Manifolds, Amer. J. Math. 86 (1964), 109-160.
    [FG] G.B. Folland and E.M. Stein, Estimates for the - ∂_b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27(1974), 429-522.
    [Ga] B. Gaveau, Principe de moindre action, propagation de la chaleur et estim´ees sous elliptiques sur certains groupes nilpotents, Acta Math., 139(1977), #1-2, 95-153.
    [GG] A. R. Gover and C. R. Graham, CR Invariant Powers of the Sub-Laplacian, J. Reine Angew. Math. 583 (2005), 1-27.
    [GL] C. R. Graham and J. M. Lee, Smooth Solutions of Degenerate Laplacians on Strictly Pseudoconvex Domains, Duke Math. J., 57 (1988), 697-720.
    [Gr] P. Greiner, On H¨omander operators and non-holonomic geometry. Pseudo-differential operators: partial differential equations and time-frequency analysis, Fields Inst. Commun., 52, Amer. Math. Soc., Providence, RI, 1-25, 2007.
    [H] K. Hirachi, Scalar Pseudo-hermitian Invariants and the Szeg¨o Kernel on 3-dimensional CR Manifolds, Lecture Notes in Pure and Appl. Math. 143, pp. 67-76, Dekker, 1992.
    [Hij] Oussama Hijazi, A Conformal Lower Bound for the Smallest Eigenvalue of the Dirac Operator and Killing Spinors. Comm. Math. Phys. 104 (1986), no. 1, 151-162.
    [Ho] L. H¨ormander, Hypoelliptic second-order differential equations, Acta Math., 119(1967), 147-171.
    [IH] C. Iacob, D. Homentcovschi, N. Marcov, and A. Nicolau, Matematici clasice si moderne, Ed. Tehnica, Bucuresti. 1983.
    [JX] J. Jost and C.-J. Xu, Subelliptic Harmonic Maps, Trans. of AMS, Vol. 350, No. 11 (1998), 4633-4649.
    [L1] J. M. Lee, Pseudo-Einstein Structure on CR Manifolds, Amer. J. Math. 110 (1988), 157-178.
    [L2] J. M. Lee, The Fefferman Metric and Pseudohermitian Invariants, Trans. A.M.S. 296 (1986), 411-429.
    [LW] F. Lin and C.-Y. Wang, The Analysis of Harmonic Maps and Their Heat Flows, World Scientific, 2008.
    [P] S. Paneitz, A Quartic Conformally Covariant Differential Operator for Arbitrary Pseudo-Riemannian Manifolds, preprint, 1983.
    [Pe] R. Petit, Harmonic maps and strictly pseudoconvex CR manifolds. Comm. Anal. Geom. 10 (2002), no. 3, 575–610.
    [Pe2] R. Petit, Spinc-structures and Dirac operators on contact manifolds. Differential
    Geom. Appl. 22 (2005), no. 2, 229-252.
    [R] P. K. Rashevski˘ı, About connecting two points of complete nonholonomic space by admissible curve, Uch. Zapiski Ped. Inst. K. Liebknecht, 2(1938), 83-94.
    [Ru] Michel Rumin. Sub-Riemannian limit of the differential form spectrum of contact manifolds. Geom. Funct. Anal. 10 (2000), no. 2, 407-452.
    [SS] J. Shatah and M. Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics, 2.New York University, Courant Institute
    of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1998.
    [SY] R. Schoen and S.-T. Yau, Lectures on Differential Geometry, International Press, 1994.
    [W] J.-P. Wang, Private communication, 2005.
    [Xin] Y. L. Xin. Some results on stable harmonic maps. Duke Math. J. 47 (1980), 609-613.Journal of Geometric Analysis, Vol. 19 (2009), 261-287.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE