簡易檢索 / 詳目顯示

研究生: 顏文群
YEN, WEN-CHUN
論文名稱: 直接成長石墨烯於氧化物基板上製程開發研究
Development and Investigation of Direct Growth of Graphene on Arbitrary Oxide Substrates
指導教授: 闕郁倫
CHUEH, YU-LUN
口試委員: 林麗瓊
邱博文
徐文光
黃昆平
闕郁倫
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 218
中文關鍵詞: 石墨烯氧化物微波化學氣相沉積蒸氣
外文關鍵詞: graphene, oxide, microwave, CVD, nickel, vapor
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自2004年從高定向熱裂解石墨中首度分離出單層的石墨烯以來,二維材料的穩定存在已被實驗所證實。由於其獨特的二維晶體結構,石墨烯表現出諸多與傳統三維材料相異的優異物理性質,如極高的載子遷移率、光耦合強度及導熱性等,因此被許多國家及產業視為是次世代光電子元件的重點材料發展項目之一,如何合成出高品質石墨烯也成為元件上游的關鍵技術。其中,以銅與鎳等固態金屬催化劑的化學氣相沉積法因可合成出單、多層大面積且高品質的石墨烯連續薄膜,最為被廣泛研究。經由適當的製程調整,不同品質需求的石墨烯可以磊晶/析出於銅/鎳金屬層上方。然而,為了製作成以石墨烯為主要做動層的各種光電子元件,需要一個額外的轉移製程將石墨烯轉移至氧化物基板上,以迴避石墨烯與底層金屬的並聯電路效應。不幸的是,此一轉移製程將會創造大量各種缺陷,大幅地降低石墨烯的品質;此外,轉移過程繁雜且不易控制,大幅的增加製程的難易度且直接地影響元件良率。因此,如何開發將石墨烯直接成長於氧化物基板上的製程,將成為本論文的研究重點。
    本論文分兩個研究重點,其一為利用微波直接加熱析出成長石墨烯與高度結晶化之石墨;另一則為利用氣相鎳輔助催化沉積石墨烯於氧化物基板之技術開發。由於材料對微波吸收選擇性的差異,微波源所挾帶的電磁能可以有效地集中在欲加熱的區域並達到快速升降溫的特性,在此研究中我們以具強偶極性的碳化矽作為微波吸收源加熱預先蒸鍍的無序碳/鎳/氧化矽基板的試片,使鎳層在高溫時固溶碳原子,並於冷卻過程中析出石墨烯。值得一提的是,由於無序碳對鎳層的還原效應的貢獻,與氧氣的氧化作用達到平衡,鎳層將可保留其金屬特性,因此系統能在常壓下製備石墨烯。此外,氧化鎳層與金屬鎳層的體積來回劇烈變化,將可迫使鎳表面的無序碳持續不斷的被導入鎳層之中,並於鎳層與基板間析出具有高度結晶特性的石墨層,其轉換率更可高達約80%。
    在氣相鎳輔助催化沉積石墨烯製程技術方面,我們利用鎳蒸氣對甲烷的催化效應,使之解離成碳原子,並自組裝成具穩定相的六連環結構後沉積於氧化物基板上,形成大面積的連續石墨烯薄膜。以此沉積方式得到的石墨烯薄膜,可以透過改變沉積時間線性的改變石墨烯厚度,且由於氣相系統的均勻性,石墨烯能均勻的附著在具有高縱深比奈米結構的矽奈米柱陣列的表面,表現出不具有空間依賴的特性。我們也以場發射元件測試了此石墨烯/矽奈米柱陣列複合結構在高放射電流密度下的操作,間接佐證以此方式製備的石墨烯結構的高度穩定性。仰賴此製程的自組裝過程,硼蒸氣的引入也可以有效的對石墨烯做出具有化學鍵生成的取代性摻雜,且其摻雜濃度能藉由調控石墨烯的沉積速率而調整,並得到相對應不同的功函數特性,可望用以做為光電元件中具有功函數調控匹配特性的透明電極。


    In 2004, graphene, a stable 2D material with only one atomic thickness, has been first synthesized from a highly ordered pyrolytic graphite by mechanical exfoliation. Due to the two-dimensional nature, graphene exhibits a lot of outstanding physical properties such as extremely high mobility for both electrons and holes, extremely high thermal conductivity, and extremely high optical adsorption rate and is considered as one of candidates of materials for the next generation optoelectronics industry. Until today, many different processes to synthesize graphene have been developed. The chemical vapor deposition process by using Cu or Ni as the catalysts is the most famous process since it can grow graphene with high quality and large area by adjusting the growth conditions. Unfortunately, the graphene grown on the Cu or Ni foils/films by the CVD process needs an extra transfer process to transfer the graphene onto oxide substrate for devices. The transfer processes are complex and usually damage graphene to significantly decrease the quality of graphene. In this thesis, development of new processes on directly growing graphene on the arbitrary metal oxide substrates by using microwave heating process and Ni vapor-assisted CVD processes, respectively.
    Due to the strong dipole nature, SiC was used as the susceptor to absorb microwave and transfer into heat to heat the α-C/Ni/SiO2 sample prepared by E-xbeam evaporation. Since the microwave can be focused on the target, the process is fast with high temperature increase/decrease rate. The balance between oxidation and reduction by oxygen and amorphous carbon keeps the Ni layer to remain the metallic nature and allows graphene segregate on the surface. Besides, the highly order graphite was found at the interface between Ni and SiO2 with the almost 80% transformation ratio from amorphous carbon. For the graphene deposition process, Ni vapor was used as a gas phase catalyst to decompose the methane and release carbon atoms during the annealing process. The thickness of graphene can be tuned linearly by adjusting the deposition time. In addition, we also demonstrated direct growth of graphene on a high aspect ratio Si nanorod arrays. The endurance of field emitted test also shows the high stability performance of this graphene/Si nanorod hybrid structure even under a large current. Depending on the self-assembly process, we also introduce a boron vapor into the growth system to achieve the boron doping of the graphene during the graphene deposition to change the work functions by carefully adjusting the deposition rate of graphene.

    誌謝.......................................................i 摘要......................................................ix Abstract..................................................xi Chapter 1 Introduction of Graphene(review).................1 1.1 Allotropes of Carbon...................................1 1.2 Crystal and Electron Band Structure of Graphene........3 1.3 Electrical Properties of Graphene......................9 1.4 Optical Properties of Graphene........................15 1.5 Thermal Properties of Graphene........................19 1.6 Mechanical Properties of Graphene.....................23 1.7 References............................................27 Chapter 2 Manufacturing Processes of Graphene (review)....30 2.1 Mechanical Exfoliation................................30 2.2 Reduced Graphene Oxide................................36 2.3 Chemical Vapor Deposition.............................41 2.4 Other Manufacturing Process of Graphene...............66 2.5 References............................................74 Chapter 3 Direct Growth of graphene on Oxides (review)....80 3.1 Transferred Process for the CVD process...............80 3.2 Defects Generated from Transferred Process............84 3.3 Transferred-Free Graphene Epitaxial Process...........86 3.4 References............................................93 Chapter 4 Materials Analysis Method and Technology (review)..................................................95 4.1 Raman Spectroscopy....................................95 4.2 X-Ray Diffractometer.................................103 4.3 X-ray Photoelectron Spectroscopy.....................104 4.4 Scanning Electron Microscopy.........................105 4.5 Transmission Electron Microscopy.....................106 4.6 I-V measurement (Probe-system) ......................108 4.7 UV-Vis Spectroscopy and Polarized Measurement........109 4.8 References...........................................110 Chapter 5 Ultra-fast Graphene Growth in Air by Microwave     Process..................................................113 5.1 Motivation and Introduction..........................113 5.2 Experimental Design and methods......................116 5.21 The sample preparation and typical heating sequence.116 5.22 Detailed components of microwave system.............116 5.23 Materials characterization..........................118 5.3 Results and Discussion...............................118 5.4 Summary..............................................136 5.5 References...........................................137 Chapter 6 Direct Graphene Deposition via Vapor Assisted CVD Process...................................................................................141 6.1 Motivation and Introduction.............................................141 6.2 Experimental Design and methods......................143 6.21 CVD system design and the gas flow sequence.........143 6.22 Synthesis of graphene layer and graphite nanoballs..143 6.23 Materials Characterization..........................144 6.4 Results and Discussion...............................144 6.4 Summary..............................................162 6.5 References...........................................163 Chapter 7 Graphene Conformal Coating on High-Aspect Nano Structure by Vapor Assisted CVD process.........167 7.1 Motivation and Introduction..........................167 7.2 Experimental Design and methods......................168 7.21 Synthesis of Si nanorod arrays (Si NRAs) by chemical etching process..........................................169 7.22 Conformal Coating of graphene layer on Si NRAs by vapor assisted method....................................169 7.23 Materials Characterization..........................170 7.3 Results and Discussion...............................170 7.4 Summary..............................................183 7.5 References...........................................184 Chapter 8 Tunable Work Function of Graphene by Nickel-Assisted In-situ Boron Doping for Direct synthesis on Insulators...............................................190 8.1 Motivation and Introduction..........................190 8.2 Experimental Design and methods......................191 8.21 Synthesis of as-deposited intrinsic/B-doped graphene191 8.22 Materials Characterization..........................192 8.3 Results and Discussion...............................193 8.4 Summary..............................................206 8.5 References...........................................207 Chapter 9 Summary and Outlook............................211 9.1 General Conclusions..................................211 9.2 Future Works.........................................212 9.3 References...........................................214 List of Publications.....................................215

    CH1:
    [1] A. K. Geim and K. S. Novoselov, “The Rise of Graphene” Nature Materials (2007), 6, 183.
    [2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, “The electronic properties of graphene” Reviews of Modern Physics (2009), 81, 109.
    [3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films” Science (2004), 306, 666.
    [4] M. J. Allen, V. C. Tung and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene” Chemical Reviews (2010), 110, 132.
    [5] D. Fathi, “A Review of Electronic Band Structure of Graphene and Carbon Nanotubes Using Tight Binding” Journal of Nanotechnology (2011), 2011, 471241.
    [6] Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, “Experimental Observation of Quantum Hal Effect and Berry’s Phase in Graphene” Nature (2005), 438, 201.
    [7] M. Koshino, “Stacking-dependent optical absorption in multilayer graphene”, New Journal of Physics (2013), 15, 015010.
    [8] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene Optical properties of graphene”, Reviews of Modern Physics (2009), 81,109.
    [9] V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption” Physical Review B (2010), 81, 155413.
    [10]L. Yang, J. Deslippe, C.-H. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene” Physical Review Letters (2009), 103, 186802.
    [11]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene” Nano Letters (2008), 8, 902.
    [12] http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
    [13] I. Calizo, A. A. Balandin, W. Bao, F. Miao and C. N. Lau, “Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers” Nano Letters (2007), 7, 2645.
    [14] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits” Applied Physics Letters (2008), 92, 151911
    [15] C. Yu, L. Shi, Z. Yao, D. Li and A. Majumdar, “Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube” Nano Letters (2005), 5, 1842.
    [16] D. L. Nika, S. Ghosh E. P. Pokatilov and A. A. Balandin, “Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite” Applied Physics Letters (2009), 94, 203103.
    [17] C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene” Science (2008), 321, 385.
    [18] Q. Zhao, M. B. Nardelli and J. Bernholc “Ultimate strength of carbon nanotubes: A theoretical study” Physical Review B (2002), 65, 144105.
    [19] http://www.engineeringtoolbox.com/
    [20] Q. Bao and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices” ACS Nano (2012), 6, 3677.
    [21] J. Yan, Y. Zhang, P. Kim and A. Pinczuk, “Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene” Physical Review Letters (2007), 98, 166802.
    [22] The Literature Notes of Sichuan University of Science and Engineering, “霍尔效应及其应用”
    [23] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in Graphene” Nature (2005), 438, 197
    CH2:
    [1] P. R. Wallace, “The Band Theory of Graphite” Physical Review (1947), 71, 622.
    [2] J. W. McClure, “Axial Ratios in Hexagonal Crystals” Physical Review (1955), 98, 449.
    [3] S. Mouras, A. Hamm, D. Djurado and J.-C. Cousseins, “Synthesis of first stage graphite intercalation compounds with fluorides” Revue de Chimie Minérale (1987), 24, 572.
    [4] R. E. Peierls, “Bemerkungen uber Umwandlungstemperaturen” Helvetica Physica Acta (1934), 5, 177.
    [5] L. D. Landau, “Zur Theorie der Phasenumwandlungen II” Physikalische Zeitschrift der Sowjetunion (1937), 11, 26.
    [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in Graphene” Nature (2005), 438, 197
    [7]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films” Science (2004), 306, 666.
    [8] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman “High-yield production of graphene by liquid-phase exfoliation of graphite” Nature Nanotechnology (2008), 3, 563.
    [9] G. Eda, G. Fanchini and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material” Nature Nanotechnology (2008), 3, 270.
    [10] I. Janowska, K. Chizari, O. Ersen, S. Zafeiratos, D. Soubane, V. D. Costa, V. Speisser, C. Boeglin, M. Houllé, D. Bégin, D. Plee, M.-J. Ledoux, P. H. Cuong, “Microwave Synthesis of Large Few-Layer Graphene Sheets in Aqueous Solution of Ammonia” Nano Research (2010), 3, 126.
    [11] D. R. Dreyer, S. Murali, Y. Zhu, R. S. Ruoffb and C. W. Bielawski, “Reduction of graphite oxide using alcohols” Journal of Materials Chemistry (2011), 21, 3443.
    [12] S. Thakur and N. Karak “Green reduction of graphene oxide by aqueous phytoextracts” Carbon (2012), 50, 5331.
    [13] R. Addou, A. Dahal, P. Sutter and M. Batzill, “Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition” Applied Physics Letters (2012), 100,021601.
    [14] R. S. Weatherup, B. C. Bayer, R. Blume, C. Baehtz, P. R. Kidambi, M. Fouquet, C. T. Wirth, R. Schlögl and S. Hofman “On the Mechanisms of Ni-Catalysed Graphene Chemical Vapour Deposition” ChemPhysChem (2012), 13, 2544.
    [15] Y. Zhang, L. Gomez, F. N. Ishikawa, A. Madaria, K. Ryu, C. Wang, A. Badmaev and C. Zhou, “Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition” The Journal of Physical Chemistry Letters (2010), 1, 3101.
    [16] S. J. Chae, F. Güneş, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat and Y. H. Lee “Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation” Advanced Materials (2009), 21, 2328.
    [17] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition” Nano Letters (2009), 9, 30.
    [18] C. Mattevi, H. Kima and M. Chhowalla, “A review of chemical vapour deposition of graphene on copper” Journal of Materials Chemistry (2011), 21, 3324.
    [19] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S. -S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators” Applied Physics Letters (2008), 93, 113103.
    [20] R. S. Weatherup, B. Dlubak and S. Hofmann, “Kinetic Control of Catalytic CVD for High-Quality Graphene at Low Temperatures” ACS Nano (2012), 6, 9996.
    [21] X. Li, W. Cai1, J. An, S. Kim, J. Nah, D. Yang, R. Piner, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils” Science (2009), 324, 1312.
    [22] K. Celebi, M. T. Cole, J. W. Choi, F. Wyczisk, P. Legagneux, N. Rupesinghe, J. Robertson, K. B. K. Teo and H. G. Park, “Evolutionary Kinetics of Graphene Formation on Copper” Nano Letters (2013), 13, 967.
    [23] S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, “Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst” Nano Letters (2010), 10, 4128.
    [24] G. H. Han, F. Güneş, J. J. Bae, E. S. Kim, S. J. Chae, H.-J. Shin, J. -Y. Choi, D. Pribat and Y. H. Lee, “Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth” Nano Letters (2011), 11, 4144.
    [25] W. Wu, L. A. Jauregui, Z. Su, Z. Liu, J. Bao, Y. P. Chen and Q. Yu, “Growth of Single Crystal Graphene Arrays by Locally Controlling Nucleation on Polycrystalline Cu using Chemical Vapor Deposition” Advanced Materials (2011), 23, 4898.
    [26] A. T. Murdock, A. Koos, T. B. Britton, L. Houben, T. Batten, T. Zhang, A. J. Wilkinson, R. E. Dunin-Borkowski, C. E. Lekka and N. Grobert, “Controlling the Orientation, Edge Geometry, and Thickness of Chemical Vapor Deposition Graphene” ACS Nano (2013), 7, 1351.
    [27] R. M. Jacobberger and M. S. Arnold, “Graphene Growth Dynamics on Epitaxial Copper Thin Films” Chemistry of Materials (2013), 25, 871.
    [28] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei and Y. P. Chen “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition” Nature Materials (2011), 10, 443.
    [29] A. Guermounea, T. Charia, F. Popescua, S. S. Sabrid, J. Guillemetted, H. S. Skulasond, T. Szkopekd, M. Siaj “Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors” Carbon (2011), 49, 4204.
    [30] L. A. Ponomarenko, R. Yang, T. M. Mohiuddin, M. I. Katsnelson, K. S. Novoselov, S. V. Morozov, A. A. Zhukov, F. Schedin, E. W. Hill and A. K. Geim, “ Effect of a high-kappa environment on charge carrier mobility in graphene” Physical Review Letters (2009), 102, 206603.
    [31] C. E. Hamilton, PhD Thesis, Rice University (2009).
    [32] M. V. Antisari, A. Montone, N. Jovic, E. Piscopiello, C. Alvania and L. Pillonia, “Low energy pure shear milling: A method for the preparation of graphite nano-sheets” Scripta Materialia (2006), 55, 1047.
    [33] S. Garaj, W. Hubbard and J. A. Golovchenko, “Graphene synthesis by ion implantation” Applied Physics Letters (2009), 97, 183103.
    [34] I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov and M. Keidar, “The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes” Carbon (2010), 48, 4556.
    [35] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price and J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons” Nature (2009), 458, 872.
    [36] T. Shimizu, J. Haruyama, D. C. Marcano, D. V. Kosinkin, J. M. Tour, K. Hirose and K. Suenaga, “Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons” Nature Nanotechnology (2011), 6, 45.
    [37] T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L. Kong, P. M. Wilson, P. A. Dowben, A. Enders and A. Sinitskii, “Large-scale solution synthesis of narrow graphene nanoribbons” Nature Communication (2014), 5, 3189.
    [38] J. Berashevich and T. Chakraborty, “Zipping and unzipping of nanoscale carbon structures” Physical Review B (2011), 83,195442.
    [39] Y.-W. Son, M. L. Cohen and S. G. Louie, “Energy Gaps in Graphene Nanoribbons” Physical Review Letters (2006), 97, 216803.
    [40] M. Y. Han, B. O¨zyilmaz, Y. Zhang and P. Kim, “Energy Band-Gap Engineering of Graphene Nanoribbons” Physical Review Letters (2007), 98, 206805.
    [41] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. deHeer, “Electronic confinement and coherence in patterned epitaxial graphene” Science (2006), 312, 1191.
    [42] A. V. Talyzin, S. Luzan, I. V. Anoshkin, A. G. Nasibulin, E. I. Kauppinnen, A. Dzwilewski, A. Kreta, J. Jamnik, A. Hassanien, A. Lundstedt and H. Grennberg, “Hydrogen-Driven Cage Unzipping of C60 into Nano-Graphenes” The Journal of Physical Chemistry C (2014), 118, 6504.
    [42] H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai and T. Hasegawa, “Inkjet printing of single-crystal films” Nature (2011), 475, 364.
    [43] F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu and A. C. Ferrari, “Inkjet-Printed Graphene Electronics” ACS Nano (2012), 6, 2992.
    CH3:
    [1] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.- Y. Choi and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes” Nature (2009), 457, 706.
    [2] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes” Nano Letters (2009), 9, 4359.
    [3] http://www.acsmaterial.com/
    [4] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao and H.-M. Cheng, “Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum” Nature Communication (2012), 3, 699.
    [5] Y.-C. Lin, C. Jin, J.-C. Lee, S.-F. Jen, K. Suenaga and P.-W. Chiu, “Clean Transfer of Graphene for Isolation and Suspension” ACS Nano (2011), 5, 2362.
    [6] Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga and P.-W. Chiu, “Graphene Annealing: How Clean Can It Be?” Nano Letters (2012), 12, 414.
    [7] S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, “Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst” Nano Letters (2010), 10, 4128.
    [8] J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates” ACS Nano (2011), 5, 6916.
    [9] J. J. Wang, M. Y. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, and B. C. Holloway, “Free-standing subnanometer graphite sheets” Applied Physics Letters (2004), 85, 1265.
    [10] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel and C. V. Haesendonc, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition” Nanotechnology (2008), 19, 305604.
    [10] G. D. Yuan, W. J. Zhang, Y. Yang, Y. B. Tang, Y. Q. Li, J. X. Wang, X. M. Meng, Z. B. He, C. M. L. Wub, I. Bello, C.S. Lee and S.T. Lee, “Graphene sheets via microwave chemical vapor deposition” Chemical Physics Letters (2009), 467, 361.
    [11] J. Sun, N. Lindvall, M. T. Cole, K. B. K. Teo and A. Yurgen, “Large-area uniform graphene-like thin films grown by chemical vapor deposition directly on silicon nitride” Applied Physics Letters (2011), 98, 252107.
    [12] T. Terasawa and K. Saiki, “Growth of graphene on Cu by plasma enhanced chemical vapor deposition” Carbon (2012), 50, 869.
    [13] Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yana and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets” Nanoscale (2013), 5, 5180.
    [14] H. Medina, Y.-C. Lin, C. Jin, C.- C. Lu, C.-H. Yeh, K.-P. Huang, K. Suenaga, J. Robertson and P.-W. Chiu, “Metal-Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications” Advanced Functional Materials (2012), 22, 2123.
    [15] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor and Y. Zhang, “Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces” Nano Letters (2010), 10, 1542.
    [16] Z. Peng, Z. Yan, Z. Sun and J. M. Tour, “Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel” ACS Nano (2011), 5, 8241.
    [17] C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, F.-R. Chen and L.-J. Li, “Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition” Nano Letters (2011), 11, 3612.
    CH4:
    [1] F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite” The Journal of Chemical Physics (1970), 53, 1126.
    [2] P. Lespade and A. Marchand, “Caracterisation de Materiaux Carbones par Microspectrometrie Raman” Carbon (1984), 22, 375.
    [3] L. G. Cançado, K. Takai, and T. Enoki, “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy” Applied Physics Letters (2006), 88, 163106.
    [4] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers” Physical Review Letters (2006), 97, 187401.
    [5] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold and L. Wirtz, “Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene” Nano Letters (2007), 7, 238.
    [6] Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, W. Chen and A. T. S. Wee, “Raman Studies of Monolayer Graphene: The Substrate Effect” Journal of Physical Chemistry C (2008), 112, 10637.
    [7] X. Dong, Y. Shi, Y. Zhao, D. Chen, J. Ye, Y. Yao, F. Gao, Z. Ni, T. Yu, Z. Shen, Y. Huang, P. Chen and L.-J. Li, “Symmetry Breaking of Graphene Monolayers by Molecular Decoration” Physical Review Letters (2009), 102, 135501.
    [8] A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene” Nature Materials (2013), 8, 235.
    [9] G. Shen, G. Xue, J. Cai, G. Zou, Y. Li and Q. Zhang, “Photo-induced reversible uniform to Janus shape change of vesicles composed of PNIPAM-b-PAzPy2” Soft Matter (2013), 9, 2512.
    [10] D. Zemlyanov, “Electron spectroscopy: A new window opens” Nature Nanotechnology (2011), 6, 612.
    [11] 蔡定平, “奈米檢測技術” 國家實驗研究院儀器科技研究中心 (2009)
    [12] 黃建修, “憶阻記憶體元件之材料開發與探索” 國立清華大學 (2013)
    [13] http://www.home.agilent.com/agilent/home.jspx?cc=TW&lc=cht
    [14] S. Chaiwan, M. Hoffman and P. Munroe, “Investigation of sliding wear surfaces in alumina using transmission electron microscopy” Science and Technology of Advanced Materials (2006), 7, 826.
    [15] R. Krueger, “Dual-column (FIB–SEM) wafer applications”, Micron (1999), 30, 221.
    [16] http://serc.carleton.edu/research_education/geochemsheets/techniques/SXD.html.
    [17] http://frontierlab.co.kr/default/product/sem/principle_sem.php.
    [18] http://en.wikipedia.org/wiki/Transmission_electron_microscopy.
    [19] http://micron.ucr.edu/public/manuals/Tem-intro.pdf.
    [20] C. S. Fadley, “X-ray photoelectron spectroscopy: Progress and perspectives” Journal of Electron Spectroscopy and Related Phenomena (2010), 2, 178.
    [21] H. Förster, “UV/VIS Spectroscopy” Molecular Sieves (2004), 4, 337.
    CH5:
    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov “Electric field effect in atomically thin carbon films” Science (2004), 306, 666.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson , I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene” Nature (2005), 438, 197.
    [3] A. K. Geim and K. S. Novoselov, “The rise of graphene” Nature Materials (2007), 6, 183.
    [4] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim and K. S. Novoselov, “Graphene-based liquid crystal device” Nano Letters (2008) 8, 1704.
    [5] M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni(111)” Surface Science (1979), 82, 228.
    [6] M. Eizenberg and J. M. Blakely, “Carbon interaction with nickel surfaces - monolayer formation and structural stability” Journal of Chemical Physics (1979), 71, 3467.
    [7] K. Natesan and T. F. Kassner, “Thermodynamics of carbon in nickel, iron-nickel and iron-chromium-nickel alloys” Metallurgical and Materials Transactions (1973), 4, 2557.
    [8] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness” Carbon (2007), 45,2017.
    [9] R. T. K. Bake, M. A. Barber, R. J. Waite, P. S. Harris and F. S. Feates, “Nucleation and growth of carbon deposits from nickel catalyzed decomposition of acetylene” Journal of Catalysis (1972), 26, 51.
    [10] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators” Applied Physics Letters (2008), 93,113103.
    [11] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition” Nano Letters (2009), 9, 30.
    [12] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Cho and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes” Nature (2009), 457, 706.
    [13] Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. Song , B. H. Hong and J.- H. Ahn, “Wafer-scale synthesis and transfer of graphene films” Nano Letters (2010), 10, 490.
    [14] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu and J. M. Tour, “Growth of graphene from solid carbon sources” Nature (2010), 468, 549.
    [15] J. A. Rodriguez-Manzo, C. Pham-Huu and F. Banhart, “Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon” ACS Nano (2011), 5, 1529.
    [16] M. Xu, D. Fujita, K. Sagisaka, E.Watanabe and N. Hanagata, “Production of extended single-layer graphene” ACS Nano (2011), 5, 1522.
    [17] L. M. A. Perdigao, S. N. Sabki, J. M. Garfitt, P. Capiod and P. H. Beton, “Graphene formation by decomposition of C60” Journal of Physical Chemistry C (2011), 115, 7472.
    [18] L. Okeke and H. Stori, “Plasma-chemical decomposition of methane during diamond synthesis” Plasma Chemistry and Plasma Processing (1991), 11, 489.
    [19] M. Sokolowski, A. Sokolowska, B. Gokieli, A. Michalski, A. Rusek and Z. Romanowski, “Reactive pulse plasma crystallization of diamond and diamond-like carbon” Journal of Crystal Growth (1979), 47, 421.
    [20] M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson and W. I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition” Journal of Applied Physics (2001), 90, 5308.
    [21] L. C. Qin, D. Zhou, A. R. Krauss and D. M. Gruen, “Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition” Applied Physics Letters (1998), 72, 3437.
    [22] K. Kobashi, K. Nishimura, Y. Kawate and T. Horiuchi, “Synthesis of diamonds by use of microwave plasma chemical-vapor deposition - morphology and growth of diamond films” Physical Review B (1988), 38, 4067.
    [23] Y. Saito, S. Matsuda and S. Nogita, “Synthesis of diamond by decomposition of methane in microwave plasma” Journal of Materials Science Letters (1986), 5, 565.
    [24] Z. Wang, M. Shoji and H. Ogata, “Carbon nanosheets by microwave plasma enhanced chemical vapor deposition in CH4-Ar system” Applied Surface Science (2011), 257, 9082.
    [25] G. Nandamuri, S. Roumimov and R. Solanki, “Remote plasma assisted growth of graphene films” Applied Physics Letters (2010), 96, 154101.
    [26] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel and C. V. Haesendonck, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition” Nanotechnology (2008) 19, 305601.
    [27] D. Fujita and T. Homma, “Surface precipitation of graphite layers on carbon-doped nickel and their stabilization effect against chemisorption and initial oxidation” Surface and Interface Analysis (1992), 19, 430.
    [28] S. R. Kelemen and H. Freund, “O2 oxidation studies of the edge surface of graphite” Carbon (1985), 23, 619.
    [29] C. J. Smithells and C. E. Ransley, “The diffusion of gases through metals. III - The degassing of nickel and. the diffusion of carbon monoxide through nickel” Proceedings of the Royal Society A (1936), 155, 0195.
    [30] M. C. Pandey, “Decarburization and internal oxidation in a commercial-grade nickel” Oxidation of Metals (1997), 48, 129.
    [31] C. Liu, A. M. Huntz and J. L. Lebrun, “Origin and development of residual-stresses in the Ni-Nio system - In-situ studies at high-temperature by x-ray-diffraction” Materials Science and Engineering: A (1993), 160, 113.
    [32] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers” Physical Review Letters (2006), 97,187401.
    [33] S. Garruchet, O. Politano, P. Arnoux and V. Vignal, “A variable charge molecular dynamics study of the initial stage of nickel oxidation” Applied Surface Science (2010), 256, 5968.
    [34] A. M. Lopez-Beltran and A. Mendoza-Galvan, “The oxidation kinetics of nickel thin films studied by spectroscopic ellipsometry” Thin Solid Films (2006), 503, 40.
    [35] H. H. Uhlig, “Structure and growth of thin films on metals exposed to oxygen” Corrosion Science (1967), 7, 325.
    [36] N. Sonobe, T. Kyotani, Y. Hishiyama, M. Shiraishi and A. Tomita, “Formation of highly oriented graphite from poly(acrylonitrile) prepared between the lamellae of montmorillonite” Journal of Physical Chemistry (1988), 92, 7029.
    [37] T. Hirai and S. Yajima, “Structural features of pyrolytic graphite” Journal of Materials Science (1967), 2, 18.
    [38] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes” Nano Letters (2009), 9, 4359.
    [39] B.-J. Lee, T.- W. Lee, S. Park, H.- Y. Yu, J.-O. Lee, S.- H. Lim and G.-H. Jeong, “Low-temperature synthesis of thin graphite sheets using plasma-assisted thermal chemical vapor deposition system” Materials Letters (2011), 65, 1127.
    [40] J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa and S. Iijima, “Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition” Applied Physics Letters (2011), 98, 091501.
    CH6:
    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A.A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films” Science (2004), 306, 666.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene” Nature (2005), 438, 197.
    [3] A. K. Geim and K. S. Novoselov, “The rise of graphene” Nature Materials (2007), 6, 183.
    [4] P. Blake, P. D. Brimicombe, R. R. Nair,T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill and A. K. Geim, “Graphene-Based Liquid Crystal Device” Nano Letters (2008), 8, 1704.
    [5] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Pinter, L. Colombo and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes” Nano Letters (2009), 9, 4359.
    [6] X. Wang, L. Zhi and K. Mullen, “Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells” Nano Letters (2008), 8, 323.
    [7] J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes” Applied Physics Letters (2008), 92, 263302.
    [8] T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode” Nature Photonic (2012), 6, 105.
    [9] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes” ACS Nano (2010), 4, 43.
    [10] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils” Science (2009), 324, 1312.
    [11] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators” Applied Physics Letters (2008), 93, 113103.
    [12] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes” Nano Letters (2009), 9, 4359.
    [13] Y.-C. Lin, C. Jin, J.-C. Lee, S.-F. Jen, K. Suenaga and P.-W. Chiu, “Clean transfer of graphene for isolation and suspension” ACS Nano (2011), 5, 2362.
    [14] Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga and P.-W. Chiu, “Graphene Annealing: How Clean Can It Be?” Nano Letters (2011), 12, 414.
    [15] C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, F.-R. Chen and L.-J. Li, “Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition” Nano Letters (2011), 11, 3612.
    [16] Z. Yan, Z. Peng, Z. Sun, J. Yao, Y. Zhu, Z. Liu, P.M. Ajayan and J. M. Tour, “Growth of Bilayer Graphene on Insulating Substrates” ACS Nano (2011), 5, 8187.
    [17] Z. Peng, Z. Yan, Z. Sun, J. M. Tour, ACS Nano 2011, 5, 8241
    [18] X. Wang, S. M. Tabakman and H. Dai, “Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene” Journal of the America Chemical Society (2008), 130, 8152.
    [19] Z.-S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu and H.-M. Cheng, “Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition” Advanced Materials (2009), 21, 1756.
    [20] H. Medina, Y.-C. Lin, C. Jin, C.-C. Lu, C.-H. Yeh, K.-P. Huang, K. Suenaga, J. Robertson and P.-W. Chiu, “Metal-Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications” Advanced Functional Materials (2012), 22, 2123.
    [21] J. J. Wang, M. Y. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos and B. C. Holloway, “Free-standing subnanometer graphite sheets” Applied Physics Letters (2004), 85, 1265.
    [22] A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene” Nature Nanotechnology (2013), 8, 235.
    [23] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman spectrum of graphene and graphene layers” Physical Review Letters (2006), 97, 187401.
    [24] L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago and M. A. Pimenta, “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy” Applied Physics Letters (2006), 88, 163106.
    [25] C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene” Science 2008, 321, 385.
    [26] P. Lespade, A. Marchand, M. Couzi and F. Cruege, “Caracterisation de materiaux carbones par microspectrometrie Raman” Carbon (1984), 22, 375.
    [27] M. H. Rümmeli, A. Bachmatiuk, A. Scott, F. Börrnert, J. H. Warner, V. Hoffman, J.-H. Lin, G. Cuniberti and B. Büchner, “Direct Low Temperature Nano-Graphene Synthesis over a Dielectric Insulator” ACS Nano (2010), 4, 4206.
    [28] J. Sun, N. Lindvall, M. T. Cole, K. B. K. Teo and A. Yurgens, “Large-area uniform graphene-like thin films grown by chemical vapor deposition directly on silicon nitride” Applied Physics Letters (2011), 98, 252107.
    [29] P. R. Wallace, “The Band Theory of Graphite” Physical Review (1947), 71, 622.
    [30] L. Y. Carl, “Hand Book of Vapor Pressure” Gulf Publishing Company, 4, 202.
    [31] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene” Science (2008), 320, 1308.
    [32] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition” Nano Letters, (2009), 9, 30.
    [33] C.-C. Lu, Y.-C. Lin, C.-H. Yeh, J.-C. Huang and P.-W. Chiu, “High Mobility Flexible Graphene Field-Effect Transistors with Self-Healing Gate Dielectrics” ACS Nano (2012), 6, 4469.
    [34] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2” Nature Nanotechnology (2008), 3, 206.
    [35] M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg and j. Park, “Transfer-Free Batch Fabrication of Single Layer Graphene Transistors” Nano Letters (2009), 9, 4479.
    CH7:
    [1] A. K. Geim, “Graphene: Status and Prospects” Science (2009), 324, 1530.
    [2] Y.-L. Zhang, Q.-D, Chen, Z. Jin, E. Kim and H.-B. Sun, “Biomimetic graphene films and their properties” Nanoscale (2012), 4, 4858.
    [3] Y.-L. Zhang, L. Guo, H. Xia, Q.-D. Chen, J. Feng and H.-B. Sun, “Photoreduction of Graphene Oxides: Methods, Properties, and Applications” Advanced Optical Materials (2014), 2, 10.
    [4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene” Nature (2005), 438, 197.
    [5] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene” Solid State Communication (2008), 146, 351.
    [6] S.-H. Pan, H. Medina, L.-J. Chou, Z. Wang, K.-H. Chen, L.-C. Chen and Y.-L. Chueh, “Direct assessment of the mechanical modulus of graphene co-doped with low concentrations of boron–nitrogen by a non-contact approach” Nanoscale (2014), 6, 8635.
    [7] A. A. Balandin, S. Ghosh, W.Bao, I. Calizo, D. Teweldebrhan, F.Miao and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene” Nano Letters (2008), 8, 902.
    [8] D. L. Nika, S. Ghosh, E. P. Pokatilov and A. A. Balandin, “Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite” Applied Physics Letters (2009), 94, 203103.
    [9] M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Z. Chen, J. C. Tsang and P. Avouris, “Energy Dissipation in Graphene Field-Effect Transistors” Nano Letters (2009), 9, 1883.
    [10] A. D. Liao, J. Z. Wu, X. Wang, K. Tahy, D. Jena, H. Dai and E. Pop, “Thermally Limited Current Carrying Ability of Graphene Nanoribbons” Physical Review Letters (2011), 106, 256801.
    [11] Q. Shao, G. Liu, D. Teweldebrhan and A. A. Balandin, “High-temperature quenching of electrical resistance in graphene interconnects” Applied Physics Letters (2008), 92, 202108.
    [12] C.-H. Yeh, H. Medina, C.-C. Lu, K.-P. Huang, Z. Liu, K. Suenaga and P.-W. Chiu, “Scalable Graphite/Copper Bishell Composite for High- Performance Interconnects” ACS Nano (2014), 8, 275.
    [13] J. Robertson, G. Zhong, S. Esconjauregui, C. Zhang and S. Hofmann, “Synthesis of carbon nanotubes and graphene for VLSI interconnects” Microelectronic Engineering (2013), 107, 210.
    [14] S. Lee, S. Lee and E.-H. Yang, “A Study on Field Emission Characteristics of Planar Graphene Layers Obtained from a Highly Oriented Pyrolyzed Graphite Block” Nanoscale Research Letters (2009), 4, 1218.
    [15] J. O. Hwang, D. H. Lee, J. Y. Kim, T. H. Han, B. H. Kim, M. Park, K. No and S. O. Kim, “Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission” Journal of Materials Chemistry (2011), 21, 3432.
    [16] A. Malesevic, R. Kemps, A. Vanhulsel, M. P. Chowdhury and A. Volodin, “Field emission from vertically aligned few-layer graphene” Journal of Applied Physics (2008), 104, 084301.
    [17] W. T. Zheng, Y. M. Ho, H. W. Tian, M. Wen, J. L. Qi and Y. A. Li, “Field Emission from a Composite of Graphene Sheets and ZnO Nanowires” The Journal of Physical Chemistry C (2009), 113, 9164.
    [18] J. L. Qi, X. Wang, W. T. Zheng, H. W. Tian, C. Q. Hu and Y. S. Peng, “Ar plasma treatment on few layer graphene sheets for enhancing their field emission properties” Journal of Physics D : Applied Physics (2010), 43, 055302.
    [19] N. Soin, S. Roy, K. S. Hazra, D. S. Misra and T. H. Lim, “Enhanced and Stable Field Emission from in Situ Nitrogen-Doped Few-Layered Graphene Nanoflakes” The Journal of Physical Chemistry C (2011), 115, 5366.
    [20] I. Lahiri, V. P. Verma and W. Choi, “An all-graphene based transparent and flexible field emission device” Carbon (2011), 49, 1614.
    [21] Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz and U. Gösele, “Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching” Nano Letters (2008), 8, 3046.
    [22] J. M. Wu and and C.-H. Kuo, “A stable, low turn-on field of SnO2 : Sb–SiO2 core–shell nanocable emitters” Journal of Physics D: Applied Physics (2009), 42, 125401.
    [23] Z.-S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu and H.-M. Cheng, “Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition” Advanced Materials (2009), 21, 1756.
    [24] L. Gao, G.-X. Ni, Y. Liu, B. Liu, A. H. Castro Neto and K. P. Loh, “Face-to-face transfer of wafer-scale graphene films” Nature (2014), 505, 190.
    [25] C.-K. Huang, Y. Ou, Y. Bie, Q. Zhao and D. Yu, “Well-aligned graphene arrays for field emission displays” Applied Physics Letters (2011), 98, 263104.
    [26] S. I. Jung, S. H. Jo, H. S. Moon, J. M. Kim, D.-S. Zang and C. J. Lee, “Improved Crystallinity of Double-Walled Carbon Nanotubes after a High-Temperature Thermal Annealing and Their Enhanced Field Emission Properties” The Journal Physical Chemistry C (2007), 111, 4175.
    [27] A. Pandey, A. Prasad, J. P. Moscatello, M. Engelhard, C. Wang and Y. K. Yap, “Very Stable Electron Field Emission from Strontium Titanate Coated Carbon Nanotube Matrices with Low Emission Thresholds” ACS Nano (2012), 7, 117.
    [28] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires” Nature (2008), 451, 163.
    [29] W.-C. Yen, Yu-Ze Chen, Chao-Hui Yeh, Jr-Hau He, Po-Wen Chiu and Yu-Lun Chueh, “Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization” Scientific Reports (2014), 4, 4739
    [30] J. H. Parker, D. W. Feldman, M. Ashkin, “Raman Scattering by Silicon and Germanium” Physical Review (1967), 155, 712.
    [31] Y. Y. Wang, Z. H. Ni, T. Yu, T.; Z. X. Shen, H. M. Wang, Y. H. Wu and W. Chen, “Raman Studies of Monolayer Graphene: The Substrate Effect” The Journal Physical Chemistry C (2008), 112, 10637.
    [32] T. M. G. Mohiuddin, A. Lombardo, R. R Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C.Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim and A. C. Ferrari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation” Physical Review B (2009), 79, 205433.
    [33] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects” Solid State Communications (2007), 143, 47.
    [34] A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene” Nature Nanotechnology (2013), 8, 235.
    [35] L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A.Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago and M. A. Pimenta, “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy” Applied Physics Letters (2006), 88, 163106.
    [36] P.-Y. Teng, C.-C. Lu, K. Akiyama-Hasegawa, Y.-C.Lin, C.-H. Yeh, K. Suenaga and P.-W. Chiu, “Remote Catalyzation for Direct Formation of Graphene Layers on Oxides” Nano Letters (2012), 12, 1379.
    [37] H. Medina, Y.-C. Lin, C. Jin, C.-C. Lu, C.-H. Yeh, K.-P. Huang, K. Suenaga, J. Robertson and P.-W. Chiu, “Metal-Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications” Advanced Functional Materials (2012), 22, 2123.
    [38] M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami and M. Ohwada, “Growth of native oxide on a silicon surface” Journal of Applied Physics (1990), 68, 1272.
    [39] L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu and H.-J.Gao, “Controlled Synthesis of Large-Scale, Uniform, Vertically Standing Graphene for High-Performance Field Emitters” Advanced Materials (2013), 25, 250.
    [40] X. Fang, Y. Bando, U. K. Gautam, C. Ye and D. Golberg, “Inorganic semiconductor nanostructures and their field-emission applications” Journal of Materials Chemistry (2008), 18, 509.
    [41] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink and P. J. Kelly, “Doping Graphene with Metal Contacts” Physical Review Letters (2008), 101, 026803.
    [42] F. Liu, H. Gan, D.-M. Tang, Y. Cao, X. Mo, J. Chen, S. Deng, N. Xu, D. Golberg, and Y. Bando, “Growth of Large-Scale Boron Nanowire Patterns with Identical Base-Up Mode and In Situ Field Emission Studies of Individual Boron Nanowire” Small (2014), 10, 685.
    [43] D. Pradhan, M. Kumar, Y. Ando and K. T. Leung, “Efficient field emission from vertically grown planar ZnO nanowalls on an ITO-glass substrate” Nanotechnology (2008), 19, 035603.
    [44] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu and W. Huang, “Stable field emission from hydrothermally grown ZnO nanotubes” Applied Physics Letters (2006), 88, 213102.
    CH8:
    [1] S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. H. Lee, F. Guinea, A. H. Castro Neto and A. Lanzara, “Substrate-induced bandgap opening in epitaxial graphene” Nature Materials (2007), 6, 770.
    [2] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. dos Santos, J. Nilsson, F. Guinea, A. K. Geim and A. H. C. Neto, “Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect” Physical Review Letters (2007), 99, 216802.
    [3] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene” Nature (2009), 459, 820.
    [4] Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim and P. Kim, “Tuning the Graphene Work Function by Electric Field Effect” Nano Letters (2009), 9, 3430.
    [5] Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li and J. Kong, “Work Function Engineering of Graphene Electrode via Chemical Doping” ACS Nano (2010), 4, 2689.
    [6] B. H. Lee, J.-H. Lee, Y. H. Kahng, N. Kim, Y. J. Kim, J. Lee, T. Lee and K. Lee, “Graphene-Conducting Polymer Hybrid Transparent Electrodes for Efficient Organic Optoelectronic Devices” Advance Functional Materials (2014), 24, 1847.
    [7] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo and H. Dai, “N-Doping of Graphene Through Electrothermal Reactions with Ammonia” Science (2009), 324, 768.
    [8] J. E. Lee, G. Ahn, J. Shim, Y. S. Lee and S. Ryu, “Optical separation of mechanical strain from charge doping in graphene” Nature Communcation (2012), 3, 1024.
    [9] W. Chen, S. Chen, D. C. Qi, X. Y. Gao and A. T. S. Wee, “Surface Transfer p-Type Doping of Epitaxial Graphene” Journal of the American Chemical Society (2007), 129, 10418.
    [10] V. Rakesh, D. Barun, R. Chandra Sekhar and C. N. R. Rao, “Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques” Journal of Physics: Condensed Matter (2008), 20, 472204.
    [11] J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li and M. Ye, “Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets” Chemistry of Materials (2009), 21, 3514.
    [12] X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen and L.-J. Li, “Doping Single-Layer Graphene with Aromatic Molecules” Small (2009), 5, 1422.
    [13] N. Jung, N. Kim, S. Jockusch, N. J. Turro, P. Kim and L. Brus, “Charge Transfer Chemical Doping of Few Layer Graphenes: Charge Distribution and Band Gap Formation” Nano Letters (2009), 9, 4133.
    [14] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes” Nature Nanotechnology (2010), 5, 574.
    [15] S.-H. Pan, H. Medina, L.-J. Chou, Z. Wang, K.-H. Chen, L.-C. Chen and Y.-L. Chueh, “Direct assessment of the mechanical modulus of graphene co-doped with low concentrations of boron–nitrogen by a non-contact approach” Nanoscale (2014), 6, 8635.
    [16] H. Medina, Y.-C. Lin, D. Obergfell and P.-W. Chiu, “Tuning of Charge Densities in Graphene by Molecule Doping” Advanced Functional Materials (2011), 21, 2687.
    [17] Y. Shi, X. Dong, P. Chen, J. Wang and L.-J. Li, “Effective doping of single-layer graphene from underlying SiO2 substrates” Physical Review B (2009), 79, 115402.
    [18] J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y.-H. Kim, M. H. Song, S. Yoo and S. O. Kim, “Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes” ACS Nano (2011), 6, 159.
    [19] W.-C. Yen, Y.-Z. Chen, C.-H. Yeh, J.-H. He, P.-W. Chiu and Y.-L. Chueh, “Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization” Scientific Reports (2014), 4, 4739.
    [20] W.-C. Yen, H. Medina, C.-W. Hsu and Y.-L. Chueh, “Conformal graphene coating on high-aspect ratio Si nanorod arrays by a vapor assisted method for field emitter” RSC Advances (2014), 4, 27106.
    [21] Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga and P.-W. Chiu, “Graphene Annealing: How Clean Can It Be? “ Nano Letters (2011), 12, 414.
    [22] Y. A. Kim, K. Fujisawa, H. Muramatsu, T. Hayashi, M. Endo, T. Fujimori, K. Kaneko, M. Terrones, J. Behrends, A. Eckmann, C. Casiraghi, K. S. Novoselov, R. Saito and M. S. Dresselhaus, “Raman Spectroscopy of Boron-Doped Single-Layer Graphene” ACS Nano (2012), 6, 6293.
    [23] A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene” Nature Nanotechnology (2013), 8, 235.
    [24] T. Hu, L. Steihl, W. Rafaniello, T. Fawcett, D. D. Hawn, J. G. Mashall, S. J. Rozeveld, C. L. Putzig, J. H. Blackson, W. Cermignani and M. G. Robinson, “Structures and properties of disordered boron carbide coatings generated by magnetron sputtering” Thin Solid Films (1998), 332, 80.
    [25] W. Cermignani, T. E. Paulson, C. Onneby and C. G. Pantano, “Synthesis and characterization of boron-doped carbons” Carbon (1995), 33, 367.
    [26] T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, Y. Arimoto and T. Ito, “Boron Diffusion Through Pure Silicon Oxide and Oxynitride Used for Metal‐Oxide‐Semiconductor Devices” Journal of Electrochemical Society (1993), 140, 3624.
    [27] M. Ichiro, K. Eiji, A. Norihisa, S. Masahisa, Y. Masahiko, T. Shin-ichi, W. Mikio, K. Shigeru, M. Yuichi, M. Sei-ichi and K. Masahiro, “Diffusion and Segregation of Carbon in SiO2 Films” Japaness Journal of Applied Physics (1997), 36, 1465.
    [28] A. D. Buckingham “Permanent and Induced Molecular Moments and Long-Range Intermocular Force” Adv Chem Phys (1967) , 12, 107.
    [29] D. Ziegler, P. Gava, J. Güttinger, F. Molitor, L. Wirtz, M. Lazzeri, A. M. Saitta, A. Stemmer, F. Mauri and C. Stampfer, “Variations in the work function of doped single- and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory” Physical Review B (2011), 83, 235434.
    [30] N. F. Mott, “Introductory talk; Conduction in non-crystalline materials” Journal of Non-Crystal line Solids (1972), 8-10, 1.
    [31] H. Medina, Y.-C. Lin, C. Jin, C.-C. Lu, C.-H. Yeh, K.-P. Huang, K. Suenaga, J. Robertson and P.-W. Chiu, “Metal-Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications” Advanced Functional Materials (2012), 22, 2123.
    CH9:
    [1] N. Zhua, W. Liub, M. Xuea, Z. Xiea, D. Zhaoa, M. Zhanga, J. Chenb and T. Cao, “Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries” Electrochimica Acta (2010), 55, 5813.
    [2] Y. Shi, L. Wen, F. Li and H.-M. Cheng, “Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries” Journal of Power Sources (2011), 196, 8610.
    [3] L. Shen, C. Yuan, H. Luo, X. Zhang , S. Yang and X. Lu, “In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries” Nanoscale (2011), 3, 572.
    [4] Y. Tang, F. Huang, W Zhao, Z. Liu and D. Wan, “Synthesis of graphene-supported Li4Ti5O12 nanosheets for high rate battery application” Journal of Materials Chemistry (2012), 22, 11257.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE