研究生: |
黃靖祐 Huang, Ching-Yu |
---|---|
論文名稱: |
透過可拉伸式結構在SOI上實現新式可撓性觸覺感測器陣列 Develop & Implement a SOI-based Novel Tactile Sensor Array with Stretchable & Flexible Structure |
指導教授: |
方維倫
Fang, Wei-Leun |
口試委員: |
謝哲偉
Hsieh, Che-Wei 胡志帆 Hu, Chih-Fan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 觸覺感測器 、感測陣列 、可撓性 、拉伸特性 、調變空間解析度 |
外文關鍵詞: | flexable |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究著重於開發具有可調變空間解析度的可撓性觸覺感測器陣列。相較於一般利用高分子材料來實現可撓性觸覺感測器,此篇透過拉伸式彈簧結構設計,來連接做為觸覺感測器的節點,進而改善高分子材料本身製程整合不易,以及材料附著性差等問題,並增加調變空間解析度之能力。在正向力感測方面,運用全對稱的壓阻材料,接成惠斯同電橋來消除雜訊並放大輸出訊號,再利用同時當作結構聯結與電性聯結的彈簧導線,將電性遷到外部以方便讀取。
統整本研究四大特點:(1)製程流程與材料選用皆相容於傳統半導體製程,並透過製程整合,將感測器直接製作於拉伸式陣列中,免除後組裝的困難。(2)拉伸式彈簧結構在製作過程中處於緊密排列的狀態,令元件能夠高密度地被製作出來,以節省空間。並在後續元件完成時,透過拉伸的方式來調變感測器的空間解析度。(3)運用剛性相對強之薄膜結構,藉此增加正向力的感測範圍,並透過惠斯同電橋來消除雜訊。(4)可撓性特性讓元件能夠貼附於曲面,使元件能夠被運用於更廣泛的使用情境。
This study presents a three by three flexible tactile sensor array using stretchable silicon spring with doping silicon. Each tactile sensor device is located at the silicon-unit of a 2D chip-network distributed, which are mechanically and electrically connected to surrounding devices by stretchable silicon spring. The doping silicon acts as a piezo-resistive sensing element embedded into the membrane located at the center of unit, which can detect normal force without heat interference by Wheatstone bridge. The springs can stretch and expand the tactile sensor by several times of magnitude area forming a variable-density network of interconnected devices. There are four merits of this approach. (1) Using existing process technologies and materials for semiconductor could simultaneously complete the tactile sensor and spring structure without assembling problem. (2) Spring structure lets the tactile sensor array have the tunable spatial resolution by changing the distance between each unit. (3) Wheatstone bridge on silicon membrane has a large sensing range in normal force without interference of temperature by fully differential design. (4) The tactile-network with flexibility can be applied to curved surfaces and stretchable application.
[1] http://www.sensorprod.com/index.php
[2] http://hospital.kingnet.com.tw
[3] http://www.twhealth.org.tw
[4] http://www.mmh.org.tw/davinci
[5] http://www.apple.com/tw/
[6] http://www.shadowrobot.com/
[7] http://www.plattform-i40.de/I40/Navigation/EN/Home/home.html
[8] https://www.microsoft.com/en-us/cloud-platform/internet-of-things
[9] https://www.memsnet.org/mems/what_is.html
[10] http://www.memx.com/technology.htm
[11] J. Engel, J. Chen, & C. Liu, “Development of polyimide flexible tactile sensor skin,” Journal of Micromechanics and Microengineering, 13(3), pp. 359, 2003.
[12] E. S. Hwang, J. H. Seo, & Y. J. Kim, “A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics,” Journal of microelectromechanical systems, 16(3), pp. 556-563, 2007.
[13] H. Takahashi, A. Nakai, N. Thanh-Vinh, K. Matsumoto, & I. Shimoyama, “A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping,” Sensors and Actuators A: Physical, 199, pp. 43-48, 2013.
[14] N. Thanh-Vinh, N. Binh-Khiem, H. Takahashi, K. Matsumoto, & I. Shimoyama, “High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers,” Sensors and Actuators A: Physical, 215, pp. 167-175, 2014.
[15] H. K. Lee, J. Chung, S. I. Chang, & E. Yoon, “Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors,” Journal of Microelectromechanical Systems, 17(4), pp. 934-942, 2008.
[16] Y. C. Liu, C. M. Sun, L. Y. Lin, M. H. Tsai, & W. Fang, “Development of a CMOS-based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in,” Journal of Microelectromechanical Systems, 20(1), pp. 119-127, 2011.
[17] R. Surapaneni, Q. Guo, Y. Xie, D. J. Young, & C. H. Mastrangelo, “A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes,” Journal of Micromechanics and Microengineering, 23(7), p. 075004, 2013.
[18] D. Alveringh, R. A. Brookhuis, R. J. Wiegerink, & G. J. M. Krijnen, “A large range multi-axis capacitive force/torque sensor realized in a single SOI wafer,” IEEE Micro Electro Mechanical Systems, San Francisco, CA, pp. 680-683, 2014, January.
[19] E. S. Kolesar, & C. S. Dyson, “Object imaging with a piezoelectric robotic tactile sensor,” Journal of Microelectromechanical Systems, 4(2), pp. 87-96, 1995.
[20] C. Li, P. M. Wu, S. Lee, A. Gorton, M. J. Schulz, & C. H. Ahn, “Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer,” Journal of Microelectromechanical Systems, 17(2), pp. 334-341, 2008.
[21] F. Maita, L. Maiolo, A. Minotti, A. Pecora, D. Ricci, G. Metta,... & G. Fortunato, “Ultraflexible tactile piezoelectric sensor based on low-temperature polycrystalline silicon thin-film transistor technology.” IEEE Sensors Journal, 15(7), 3819-3826, 2015.
[22] Y. Hasegawa, M. Shikida, H. Sasaki, K. Itoigawa, & K. Sato, “An active tactile sensor for detecting mechanical characteristics of contacted objects,” Journal of micromechanics and microengineering, 16(8), pp. 1625, 2006.
[23] S. Wattanasarn, K. Noda, K. Matsumoto, & I. Shimoyama, “3D flexible tactile sensor using electromagnetic induction coils,” IEEE Micro Electro Mechanical Systems, Paris, France, pp. 488-491 , 2012, January.
[24] J. S. Heo, J. Y. Kim, & J. J. Lee, “Tactile sensors using the distributed optical fiber sensors,” IEEE ICST, Canada, Montreal, pp. 486-490, 2008, November.
[25] L. Guo, G. S. Guvanasen, X. Liu, C. Tuthill, T. R. Nichols, & S. P. DeWeerth, “A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing,” IEEE transactions on biomedical circuits and systems, 7(1), pp. 1-10, 2013.
[26] S. I. Yoon, & Y. J. Kim, “A flexible tactile sensor based on a thermoelectric device for simultaneous detection of contact heat and contact force,” Journal of micromechanics and microengineering, 20(10), p. 105017, 2010.
[27] H. K. Lee, J. Chung, S. I. Chang, & E. Yoon, “Polymer tactile sensing array with a unit cell of multiple capacitors for three-axis contact force image construction,” IEEE Micro Electro Mechanical Systems, Hyogo, Japan, pp. 623-626, 2007, January.
[28] M. Y. Cheng, X. H. Huang, C. W. Ma, & Y. J. Yang, “A flexible capacitive tactile sensing array with floating electrodes,” Journal of Micromechanics and Microengineering, 19(11), p. 115001, 2009.
[29] J. Engel, J. Chen, Z. Fan, & C. Liu, “Polymer micromachined multimodal tactile sensors,” Sensors and Actuators A: physical, 117(1), pp. 50-61, 2005.
[30] T. Loher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. Debaets, & H. Reichl, “Stretchable electronic systems,” IEEE EPTC, Singapore, pp. 271-276, 2006, December.
[31] F. Axisa, F. Bossuyt, T. Vervust, & J. Vanfleteren, “Laser based fast prototyping methodology of producing stretchable and conformable electronic systems,” IEEE ESTC, London, United Kingdom, pp. 1387-1390, 2008, September.
[32] K. Huang, & P. Peumans, “Stretchable silicon sensor networks for structural health monitoring,” International Society for Optics and Photonics In Smart Structures and Materials, San Diego, CA, pp. 617412-617412, 2006, March.
[33] J. A. Rogers, T. Someya, & Y. Huang, “Materials and mechanics for stretchable electronics,” Science, 327(5973), pp. 1603-1607, 2010.
[34] http://www.hdtglobal.com/
[35] http://urbanwearables.technology/
[36] W. L. Sung, W. C. Lai, C. C. Chen, K. Huang, & W. Fang, “Micro devices integration with large-area 2D chip-network using stretchable electroplating copper spring,” IEEE Micro Electro Mechanical Systems, San Francisco, CA, pp. 1135-1138, 2014, January.
[37] http://digital.nls.uk/scientists/biographies/lord-kelvin/
[38] C. S. Smith, “Piezoresistance effect in germanium and silicon,” Physical review, 94(1), pp. 42, 1954.
[39] Y. Kanda, “A graphical representation of the piezoresistance coefficients in silicon,” IEEE Transactions on electron devices, 29(1), pp. 64-70, 1982.
[40] A. Boukabache, P. Pons, G. Blasquez, & Z. Dibi, “Characterisation and modelling of the mismatch of TCRs and their effects on the drift of the offset voltage of piezoresistive pressure sensors,” Sensors and Actuators A: Physical, vol. 84, pp. 292-296, 2000.
[41] Y. Kanda, “Piezoresistance effect of silicon,” Sensors and Actuators A: Physical, 28(2), pp. 83-91, 1991.
[42] S. P. Timoshenko, & S. Woinowsky-Krieger, “Theory of plates and shells,” McGraw-hill, 1959.
[43] K. Huang, R. Dinyari, G. Lanzara, J. Y. Kim, J. Feng, C. Vancura, & P. Peumans, “An approach to cost-effective, robust, large-area electronics using monolithic silicon,” IEEE IEDM, Washington, DC, pp. 217-220, 2007, December.
[44] C. P. Chen, & M. H. Leipold, “Fracture toughness of silicon,” 1980.
[45] F. Ebrahimi, & L. Kalwani, “Fracture anisotropy in silicon single crystal.” Materials Science and Engineering: A, 268(1), pp. 116-126, 1999.
[46] http://www.cleanroom.byu.edu/OxideTimeCalc.phtml
[47] Y. Okada, & Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K.” Journal of applied physics, 56(2), pp. 314-320, 1984.
[48] M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, & J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process.” Applied physics letters, 82(8), pp. 1152-1154, 2003.