簡易檢索 / 詳目顯示

研究生: 莊承霖
Zhuang, Cheng-Lin
論文名稱: 分量最佳化之梯度搜尋架構
A Gradient-based Framework for Quantile-based Simulation Optimization
指導教授: 張國浩
Chang, Kuo-Hao
口試委員: 吳建瑋
Chien-Wei Wu
楊朝龍
Chao-Lung Yang
張國浩
Kuo-Hao Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 43
中文關鍵詞: 分量迴歸實驗設計因子篩選假設檢定模擬最佳化
外文關鍵詞: Quantile Regression, Design of Experiments, Factor Screening, Hypothesis Testing, Simulation Optimization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 模擬最佳化是一種利用一系列模擬的資訊找出系統中最佳的方案的解決之道,在個人電腦發達的時代下受到了廣泛的注意並且已運作在許多實務問題上。然而,典型的模擬最佳化方法是將問題視為一個隨機系統並以期望值作為績效衡量指標,少有以分量做為績效衡量指標的研究。本研究提出一個梯度搜尋架構,gradient-based framework for quantile-based simulation optimization (GBQS)來解決以分量為績效衡量指標的模擬最佳化問題。GBQS是以STRONG-S為基礎並且作修改,使之得以解決更高維度的問題,過程中運用了大量的統計方法如實驗設計、分量迴歸、因子篩選及假設檢定來提高求解效率及控制求解的品質,在最後的數值實驗及一個實務問題也獲得了不錯的表現,驗證了GBQS在各種情況下都有著高度的適應性。


    Simulation optimization is one kind of optimization methods aimed to find the best solution in a simulated stochastic system. Especially in PC-era, simulation optimization has been attracting a lot of attention, and adopted in many practical problems. However, classical simulation optimization methods focused on expectation-based problems; seldom researches considered quantile-based problems. In this thesis, a gradient-based framework for quantile-based simulated optimization (GBQS) has been proposed. GBQS is based on the framework of STRONG-S, and modified it to fit the quantile-based case. GBQS is designed to solve not only lower dimensional problems but also higher ones. For efficiency and controlling solution qualification purpose, GBQS uses a good deal of statistical techniques such as design of experiments, quantile regression, factor screening, and hypothesis testing. GBQS is verified as a highly adaptable method because it has good performance on many situations by testing for several numerical experimental problems and a practical problem.

    目錄 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 緒論 1 第一節 研究背景 1 第二節 研究目的 2 第三節 論文架構 2 第二章 文獻探討 4 第三章 GBQS演算法 8 第一節 問題定義 8 第二節 主架構 8 第三節 分量迴歸 11 第四節 樣本數及設計層數 14 第五節 Stage1 15 第六節 Stage2 23 第四章 數值實驗 27 第一節 情境設定 27 第二節 結果 29 第五章 實證分析 36 第一節 情境設定 36 第二節 結果 37 第六章 結論與未來研究 40 參考文獻 41   圖目錄 圖 1. 研究流程 3 圖 2. GBQS的骨幹 9 圖 3. GBQS的骨幹及其支脈 10 圖 4. GBQS演算法架構 11 圖 5. 送報生問題-情境1 37 圖 6. 送報生問題-情境2 38 圖 7. 送報生問題-情境3 38 圖 8. 送報生問題-情境4 39 表目錄 表 1. GBQS演算法- Step1 (Stage1) 22 表 2. GBQS演算法- Step1 (Stage2) 26 表 3. 數值實驗-情境設定 28 表 4. 數值實驗-不同情境下的 29 表 5. 數值實驗-參數設定 30 表 6. 數值實驗-結果(Rosenbrock) 31 表 7. 數值實驗-結果(Beale) 31 表 8. 數值實驗-結果(F. & R) 32 表 9. 數值實驗-結果(Powell singular) 32 表 10. 數值實驗-GBQS與其他方法之O.G.比較 33 表 11. 數值實驗-GBQS與其他方法之A.P.比較 34 表 12. 送報生問題-情境設定 37

    Banks, J. (1998). Handbook of Simulation. John Wiley and Sons.
    Barton, R. R., & Ivey Jr, J. S. (1996). Nelder-Mead simplex modifications for simulation optimization. Management Science, 42(7):954-973.
    Barton, R. R., & Meckesheimer, M. (2006). Metamodel-based simulation optimization. Handbooks in operations research and management science, 13:535-574.
    Bassett, G. W., & Koenker, R. W. (1986). Strong consistency of regression quantiles and related empirical processes. Econometric Theory, 2(2):191-201.
    Batur, D., & Choobineh, F. (2010). A quantile-based approach to system selection. European Journal of Operational Research, 202(3), 764-772.
    Box, G. E., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society, 13(1):1-45.
    Chang, K. H., Hong, L. J., & Wan, H. (2013). Stochastic trust-region response-surface method (STRONG)-a new response-surface framework for simulation optimization. INFORMS Journal on Computing, 25(2):230-243.
    Chang, K. H., Li, M. K., & Wan, H. (2014). Combining strong with screening designs for large-scale simulation optimization. IIE Transactions, 46:301-312.
    Chen, N., & Zhou, S. (2010). Simulation-based estimation of cycle time using quantile regression. IIE Transactions, 43(3), 176-191.
    Conn, A. R., Gould, N. I., & Toint, P. L. (2000). Trust Region Methods. Siam.
    Fu, M. C. (2002). Optimization for simulation: theory vs. practice. INFORMS
    Journal on Computing, 14:192–227.
    Fu, M. C. (2006). Gradient estimation. Handbooks in operations research and management science, 13:575-616.
    Kleijnen, J. P. (2008). Design and Analysis of Simulation Experiments. Springer.
    Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric Society, 33-50.
    Koenker, R. (2005). Quantile Regression. Cambridge university press.
    Kunter, M. H., J. Neter, C. J. Nachtsheim, and W. Li. (2004). Applied Linear Statistical Models 5th International edition., McGraw-Hill Education.
    Montgomery, D. C. (2009). Design and Analysis of Experiments. John Wiley & Sons.
    Moré, J. J., Garbow, B. S., & Hillstrom, K. E. (1981). Testing unconstrained optimization software. ACM Transactions on Mathematical Software,7(1):17-41.
    Neddermeijer, H. G., van Oortmarssen, G. J., Piersma, N., & Dekker, R. (2000). A framework for response surface methodology for simulation optimization. In Proceedings of the 32nd conference on Winter simulation, 129-136. Society for Computer Simulation International.
    Nicolai, R. P., Dekker, R., Piersma, N., & van Oortmarssen, G. J. (2004). Automated response surface methodology for stochastic optimization models with unknown variance. In Proceedings of the 36th conference on Winter simulation, 491-499. Winter Simulation Conference.
    Parzen, M. I., Wei, L. J., & Ying, Z. (1994). A resampling method based on pivotal estimating functions. Biometrika, 81(2):341-350.
    Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics, 400-407.
    Shen, H., & Wan, H. (2009). Controlled sequential factorial design for simulation factor screening. European Journal of Operational Research, 198(2):511-519.
    Shen, H., Wan, H., & Sanchez, S. M. (2010). A hybrid method for simulation factor screening. Naval Research Logistics (NRL), 57(1):45-57.
    Spall, J. C. (2003). Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. John Wiley & Sons.
    Staudte, R. G., & Sheather, S. J. (1990). Robust Estimation and Testing. John Wiley & Sons
    Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on theory and applications. IIE Transactions, 36(11):1067-1081.
    Tukey, J.W. (1960). A survey of sampling from contaminated distributions., Contributions toProbability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, 448–485.
    Wan, H., Ankenman, B. E., & Nelson, B. L. (2010). Improving the efficiency and efficacy of controlled sequential bifurcation for simulation factor screening. INFORMS Journal on Computing, 22(3):482-492.
    Wilcox, R. R., Erceg-Hurn, D. M., Clark, F., & Carlson, M. (2013). Comparing two independent groups via the lower and upper quantiles. Journal of Statistical Computation and Simulation, 1-9.
    Wright, S. J., & Nocedal, J. (1999). Numerical Optimization. Springer.
    Yin, G. G., & Kushner, H. J. (2003). Stochastic Approximation and Recursive Algorithms and Applications. Springer.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE