研究生: |
林政漢 |
---|---|
論文名稱: |
Pt-SBT-HfO2-Si MFIS 鐵電薄膜電容結構之研究 |
指導教授: | 胡塵滌 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 114 |
中文關鍵詞: | 鐵電記憶體 、SBT 、MFIS 、介面層 、HfO2 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文共分為兩部分,第一部分探討以不同厚度HfO2作為鐵電材料SBT與Si間的擴散阻絕層,對MFIS鐵電薄膜電容結構的影響。實驗發現薄膜厚度與後續熱處理會對HfO2結晶特性與擴散阻絕能力有明顯影響。鍍覆HfO2時,所有試片均會在HfO2/Si間產生介面層(IL),且經後續熱處理IL明顯增厚。經計算後IL介電常數約為5.67,在MFIS結構佔去不可忽視的跨壓。SIMS分析顯示三組厚度的HfO2試片均無法阻擋Si擴散進入SBT,且HfO2的Hf亦均會擴散進入SBT。儘管如此,HfO2仍具有相當高的介電常數,好的介面特性與低漏電流。鍍覆在不同厚度HfO2上的SBT皆具有良好結晶性與均勻晶粒結構,使MFIS鐵電薄膜電容具有相當大的記憶視窗/外加電壓比,非常適合低壓下操作。本研究證實了HfO2是1T-FeRAM中最好的擴散阻絕層之一。
第二部分利用鈦酸鋇塊材與硝酸銀水溶液,探討在鐵電材料表面上光化學反應的發生。實驗結果顯示高能光源可激發鐵電材料內電子電洞對,激發出的載子將被特定的鐵電域(+c Domain)吸引,使奈米銀粒子選擇性地在鈦酸鋇表面析出。本實驗證實銀粒子分佈與鐵電域結構間的相互關係,並成功整合奈米電極與鐵電元件。印證了鐵電微影技術的可行性。
1. Bing-Yue Tsui and Hsiu-Wei Chang, “Formation of interfacial layer during reactive sputtering of hafnium oxide”, J. Appl. Phys. Vol. 93, pp. 10119-10124 (2003)
2. Hyoungsub Kim, Paul C. Mclntyre, and Krishna C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition”, Appl. Phys. Lett. Vol. 82, pp. 106-108 (2003)
3. 吳啟明, “The Study of (BaSr)TiO3 Thin Films Deposited on LaNiO3 Electrode by rf Magnetron Sputtering for DRAMs Applications”, 清華大學, 博士論文(1997)
4. Moonju Cho, Jaehoo Park, Hong Bae Park, Cheol Seong Hwang, Jaehack Jeong, and Kwang Soo Hyun, “Chemical interaction between atomic-layer-deposited HfO2 thin films and the Si substrate”, Appl. Phys. Lett. Vol. 81, pp. 334-336 (2002)
5. Ching-Chich Leu, Chao-Hsin Chien, Ming-Jui Yang, Ming-Che Yang, Tiao-Yuan Huang, Hung-Tao Lin, and Chen-Ti Hu, “Effects of ultrathin tantalum seeding layers on sol-gel-derived SrBi2Ta2O9 thin films”, Appl. Phys. Lett. Vol. 80, pp. 4600-4602 (2002)
6. Woong-Chul Shin, Kyu-Jeong Choi, and Soon-Gil Yoon, “Low-temperature crystallization of SrBi2Ta2O9 thin films with Bi2O3 interfacial layers by liquid-delivery metalorganic chemical vapor deposition”, J. Mater. Res. Vol. 17, No. 1, pp. 26-30 (2002)
7. Yasuyukiito, Maho Ushikubo, Seiichi Yokoyama, Hironori Matsunaga, Tsutomu Atsuki, Tadashi Yonezawa, and Katsumi Ogi, “New low temperature processing of sol-gel SrBi2Ta2O9 thin films”, Integ. Ferro. Vol.14, pp. 123-131(1997)
8. Tze Chiun, Tingkai Li, Xubai Zhang, and Seshu B. Desu, “The effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 thin film”, J. Mater. Res. Vol. 12, No. 6, pp. 1569-1575 (1997)
9. S. Bhattacharyya, Apurba Laha, and S. B. Krupanidhi, “Impact of Sr content on dielectric and electrical properties of pulsed laser ablated SrBi2Ta2O9 thin films”, J. Appl. Phys. Vol. 92, pp. 1056-1061 (2002)
10. 呂正傑, “Effects of adhesion layers on the microstructure and characteristics of SrBi2Ta2O9 ferroelectric memories”, 清華大學, 博士論文 (2004)
11. B. Yu, H. Wang, C. Riccobene, Q.Xiang, and M.R. Lin, Symp. on VLSI Tech. Dig. P90 (2000)
12. B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, M. Zeitzoff, and J.C. S. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs”, IEEE Trans. Electron Devices Vol. 46, pp. 1537-1544 (1999)
13. M.-H. Cho, D.-H. Ko, Y. G. Choi, K.Jeong, I. W. Lyo, D. Y. Noh, H. J. Kim, and C. N. Whang, “Structural and electrical characteristics of Y2O3 films grown on oxidized Si (100) surface” J. Vac. Sci. Technol. A 19, pp. 192-199 (2001)
14. B. H. Lee, Y. J. K. Zawadzki, W.-J. Qi, and J. Lee, “Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon”, Appl. Phys. Lett. Vol. 74, pp. 3143-3145 (1999)
15. V. Mikhelashvili and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation”, J. Appl. Phys. Vol. 89, pp. 3256-3269 (2001)
16. M.-H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition”, Appl. Phys. Lett. Vol. 81, pp. 472-474 (2002)
17. Jack C. Lee, “Ultra-thin gate dielectrics and High-k dielectrics”, IEEE EDS vanguard series of independent short courses
18. S. M. Hu, “Stress-related problems in silicon technology”, J. Appl. Phys. Vol. 70 (6), pp. R53-R80 (1991)
19. T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition on amorphous Al2O3 thin films on Si (100)”, Appl. Phys. Lett. Vol. 75, pp. 4001-4003 (1999)
20. H. F. Luan, S. J. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roverts, and D. L. Kwong, Tech. Dig.- Int. Electron Devices Meet. Vol. 1999, p141 (1999)
21. K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon”, J. Mater. Res. Vol. 11, pp. 2757-2776 (1996)
22. B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and D. L. Kwong, Tech. Dig.-Int. Electron Devices Meet. Vol. 1999, p133 (1999)
23. I. Barin, “Thermochemical Data of Pure Substances”, VCH, Weinheim (1989)
24. J. Park, B. K. Park, M. Cho, C. S. Hwang, K. Oh, and D. Y. Yang, “Chemical Vapor Deposition of HfO2 Thin Films Using a Novel Carbon-Free Precursor”, J. Electrochemical. Soci. Vol. 149(1), pp. G89-G94 (2002)
25. J.-C. Lee, S.-J. Oh, M. Cho, C. S. Hwang, and R. Jung, “Chemical structure of the interface in ultrathin HfO2/Si films”, Appl. Phys. Lett. Vol. 84, pp. 1305-1307 (2004)
26. J. Q. He, A. Teren, C. L. Jia, P. Ehrhart, K. Urban, R. Waser, and R. H. Wang, “Microstructure and interfaces of HfO2 thin films grown on silicon substrates”, J. Crys. Grow. Vol. 262, pp. 295-303 (2004)
27. S. J. Wang, P. C. Lim, A. C. H. Huan, C. L. Liu, J. W. Chai, S. Y. Chow, J. S. Pan, Q. Li, and C. K. Ong, “Reaction of SiO2 with hafnium oxide in low oxygen pressure”, Appl. Phys. Lett. Vol. 82, pp. 2047-2049 (2003)
28. K.-J. Choi, J.-B. Park, and S.-G. Yoon, “Control of the Interfacial Layer Thickness in Hafnium Oxide Gate Dielectric Grown by PECVD”, J. Electrochemical. Soci. Vol. 150(4), pp. F75-F77 (2003)
29. C. Essary, J. M. Howard, V. Craciun, D. Craciun, and R. K. Singh, “Kinetics of interfacial layer formation during deposition of HfO2 on silicon”, Thin Solid Films Vol. 450, pp. 111-113 (2004)
30. K. Choi, H. Temkin, H. Harris, S. Gangopadhyay, L. Xie, and M. White, “Initial growth of interfacial oxide during deposition of HfO2 on silicon”, App. Phys. Lett. Vol. 85, pp. 215-217 (2004)
31. J. Lu, J. Aarik, J. Sundqvist, K. Kukli, A. Harsta, and J.-O. Carlsson, “Analytical TEM characterization of the interfacial layer between ALD HfO2 film and silicon substrate”, J. Crys. Grow. Vol. 273, pp. 510-514 (2005)
32. G. He, M. Liu, L. Q. Zhu, M. Chang, Q. Fang, and L. D. Zhang, “Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100)”, Surf. Scie. Vol. 576, pp. 67-75 (2005)
33. B. H. Lee, L. Kang, R. Nieh, W.-J. Qi, and Jack C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing”, Appl. Phys. Lett. Vol. 76, pp. 1926-1928 (2000)
34. S. Van Elshocht, M. Caymax, S. De Gendt, T. Conard, J. Petry, L. Date, D. Pique, and M. M. Heyns, “Composition and Growth Kinetics of the Interfacial Layer for MOCVD HfO2 Layers on Si substrates”, J. Electrochemical. Soci. Vol. 151, pp. F77-F80 (2004)
35. S. Ferrari and G. Scarel, “Oxygen diffusion in atomic layer deposited ZrO2 and HfO2 thin films on Si (100)”, J. Appl. Phys. Vol. 96, pp. 144-149 (2004)
36. P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si (100)”, J. Appl. Phys. Vol. 91, pp. 4353-4363 (2002)
37. 錢維烈, 鐵電物理學, 科學出版社 (1996)
38. X. Xu, “Ferroelectric Materials and their application”, North Holland, Netherlands (1991)
39. 鄭晃忠, 史德智, “極大型積體電路之鐵電材料”, 電子月刊, 第五卷第六期 (1999)
40. 陳銘森, ”鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究”, 清華大學, 博士論文 (1996)
41. Ismunandar and B. J. Kennedy, “Structure of ABi2Nb2O9(A=Sr, Ba): Refinement of Powder Neutron Diffraction Data”, J. Solid State Chem. Vol. 126, pp. 135-141 (1996)
42. A. Gonzalez, R. Jimenez, J. Mendiola, C. Alemany, and M. L. Calzada, “Ultrathin ferroelectric strontium bismuth tantalate films”, Appl. Phys. Lett. Vol. 81, pp. 2599-2601 (2002)
43. K. Amanuma, T. Hase, and Y. Miyasaka, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films”, Appl. Phys. Lett. Vol. 66, pp. 221-223 (1995)
44. Y. Shinada, A. Azuma, Keisaku, S. Chaya, N. Moriwaki, and T. Otsuki, “Retention Characteristics of a Ferroelectric Memory based on SrBi2(Ta,Nb)2O9”, Jpn. J. Appl. Phys. Vol. 36, pp. 5912-5916 (1997)
45. H. N. Al-Shareef, D. Dimos, W. L. Warren, and B. A. Tuttle, “Voltage offsets and imprint mechanism in SrBi2Ta2O9 thin films ”, J. Appl. Phys. Vol. 80, pp. 4573-4577 (1996)
46. 陳三元, “強介電薄膜之液相化學製作法”, 工業材料, p108 (1995)
47. J. S. Lee, H. J. Kwon, S. J. Hyun, and T. W. Noh, “Structure characterization of the low-temperature phase in Sr-Bi-Ta-O films”, Appl. Phys. Lett. Vol. 74, pp. 2690-2692 (1999)
48. M. A. Rodriguez, T. J. Boyla, B. A. Hernandez, C. D. Buchheit, and M. O. Eatough, “Formation of SrBi2Ta2O9: Part1. Evidence of a bismuth-deficient pyrochlore phase”, J. Mater. Res. Vol. 11, pp. 2282-2287 (1996)
49. C.-H. Lu, B.-K. Fang, and C.-Y. Wen, “Structure Identification and Electrical Properties of the New Pyrochlore Phase in the Sr-Bi-Ta-Ti-O system”, Jpn. J. Appl. Vol. 39, pp. 5573-5576 (2000)
50. I. Koiwa, Y. Okada, J. Mita, A. Hashimoto, and Y. Sawada, “Role of Excess Bi in SrBi2Ta2O9 Thin Film Prepared Using Chemical Liquid Deposition and Sol-Gel Method”, Jpn. J. Appl. Phys. Vol.36, pp. 5904-5907 (1997)
51. T. Osaka, A. Sakakibara, T. Seki, S. Ono, I. Koiwa, and A. Hashimoto, “Phase Transition in Ferroelectric SrBi2Ta2O9 Thin Films with Change of Heat-treatment Temperature”, Jpn. J. Appl. Phys. Vol. 37, pp. 597-601 (1998)
52. T. J. Boyle, C. D. Buchheit, M. A. Rodriguez, H. N. Al-Shareef, and B. A. Hernandez, “Formation of SrBi2Ta2O9: Part 1. Synthesis and characterization of a novel sol-gel solution for production of ferroelectric SrBi2Ta2O9 thin film”, J. Mater. Res. Vol. 11, pp. 2274-2281 (1996)
53. S. Y. Wu, IEEE Trans. Electron Devices ED21 (1974)
54. 彭成鑑, “強介電陶瓷材料在動態隨機記憶體上的應用”, 工業材料, p107 (1995)
55. 呂正傑, 詹世雄, “鐵電記憶體簡介”, 毫微米通訊第五卷第四期
56. J. L. Giocondi and G. S. Rohrer, “Photochemical Reduction and Oxidation Reactions on Barium Titanate Surfaces”, Mat. Res. Soc. Symp. Proc. Vol. 654, pp. AA7.4.1-AA7.4.10 (2001)
57. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang and S. Dunn, “Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures”, Nano Lett. Vol. 2, No. 6, pp. 589-593 (2002)
58. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, R. Shao, and J. H. Ferris, “Ferroelectric Lithography of Multicomponent Nanostructures”, Adv. Mater. Vol. 16, No. 9-10, pp. 795-799 (2004)
59. R. C. Garvie, “Stabilization of the Tetragonal Structure in Zirconia Microcrystals”, J. Phys. Chem. Vol. 82, pp. 218-224 (1978)
60.A. R. Teren, P. Ehrhart, R. Waser, J. Q. He, C. L. Jia, M. Schumacher,
J. Lindner, P. K. Baumann, T. J. Leedham, S. R. Rushworth and A. C.
Jones, “Comparison of hafnium precursors for the MOCVD of HfO2 for gate dielectric applications”, Integrated Ferroelectrics Vol. 57, pp. 1163-1173 (2003)
61.A. Gruverman and M. Tanaka, “Polarization retention in SrBi2Ta2O9 thin films investigated at nanoscale”, J. Appl. Phys. Vol. 89, pp. 1836-1843 (2001)
62.H. Okino, T. Ida, H. Ebihara, H. Yamada, K. Matsushige and T. Yamamoto, “Domain Orientation Imaging of PbTiO3 Single Crystals by Vertical and Lateral Piezoresponse Force Microscopy ”, Jpn. Appl. Phys. Lett. Vol. 40, pp. 5828-5832 (2001)
63. A. J. Moulson and J. M. Herbert, “Electroceramics”, p75 (2003)