研究生: |
王士睿 Wang, Shih-Jui |
---|---|
論文名稱: |
利用數位孿生技術之道路交通環境即時協同更新 Time-Critical Collaborative Update for Digital Twins in Road Traffic Environments |
指導教授: |
陳文村
Chen, Wen-Tsuen 許健平 Sheu, Jang-Ping |
口試委員: |
楊得年
Yang, De-Nian 王志宇 Wang, Chih-Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 45 |
中文關鍵詞: | 數位孿生 、用路人定位 、行動邊緣運算網路 、車聯網 |
外文關鍵詞: | Digital Twin, Road User Localization, Mobile edge computing (MEC), Internet of Vehicles (IoV) |
相關次數: | 點閱:24 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
通過整合來自各種感測器和攝影機的數據,數位孿生(Digital Twin, DT)能夠創建一個詳細的現實世界道路交通和用路人(Road User, RU)的虛擬表示(virtual representation),增強了各種交通應用的易懂程度和決策方法。然而,現代交通環境存在一個挑戰,即需要用路人配備感測器來建立準確的虛擬表示。沒有這些感測器,則難以在DT中為用路人建立虛擬表示,從而限制了DT系統的有效性。因此,解決這一差距對於DT技術在交通管理中的成功部署至關重要。
在本論文中,我們首先設計了一個基於DT的系統,旨在使用行動邊緣運算(MEC)伺服器配對和更新道路交通環境中的RU資訊。我們的系統設計目的是支援配備感測器和未配備感測器的RU,確保全面的覆蓋和服務可及性。為了實現這一目標,我們的系統包括兩個負責更新RU資訊的模組: 1)定位模組(Localization module)負責更新RU自身的位置資訊,以及 2)用路人偵測模組(Road User detection module)負責偵測交通環境中的其他RU,收集周圍RU的數據並在DT中更新他們的虛擬表示。
在系統設計之後,我們提出了一個新的最佳化問題,目標是最小化Age of Incorrect Information(AoII)指標。該指標衡量DT內虛擬表示的新鮮度和準確度。為了解決此問題,我們提出了一種名為 AoII minimization by Update Selection in Digital Twin(AoII-USDT)的演算法,用於決定每個RU的更新策略,確保資訊保持盡可能的及時和準確。
我們還探討了我們的系統在多MEC場景中的應用,展示了我們的系統和演算法的擴展性和適用性。模擬結果顯示,AoII-USDT無論是在單一還是多MEC場景中,在整體AoII、新鮮度改進和準確性方面顯著優於其他先進的算法。這些結果突顯了我們方法的有效性及其在實際應用中提高交通安全的潛力。
By integrating data from various sensors and cameras, a Digital Twin (DT) creates a detailed virtual representation of real-world road traffic and road users (RUs). This integration enhances understanding and decision-making processes for various traffic applications.
However, modern traffic environments pose a challenge as they require sensors on RUs to create an accurate virtual representation. Without these sensors, it is difficult to create virtual representations for RUs in the DT, limiting the system's effectiveness. Therefore, addressing this gap is crucial for the successful deployment of DT technology in traffic management.
In this thesis, we first design a DT-based system aimed at pairing and updating the information of RUs within road traffic environments using a Mobile Edge Computing (MEC) server. Our system is designed to support both RUs equipped with sensors and those without, ensuring comprehensive coverage and service effectiveness. To achieve this, our system includes two distinct modules responsible for updating the information of RUs: 1) Localization module for updating the location of the RU itself, and 2) Road User detection module to detect the other RUs for updating.
Following the system design, we formulate a new optimization problem aimed at minimizing the Age of Incorrect Information (AoII) metric. This metric measures the freshness and accuracy of the information within the DT. To address this optimization problem, we propose an algorithm named AoII minimization by Update Selection in Digital Twin (AoII-USDT). This algorithm determines the updating policy for each RU, ensuring that the information remains as current and accurate as possible.
We also explore the application of our system within a multi-MEC scenario, demonstrating the extensibility and adaptability of our system and algorithm.
Simulation results show that AoII-USDT significantly outperforms state-of-the-art algorithms in terms of total AoII, freshness improvement, and accuracy across both single and multi-MEC scenarios. These results highlight the effectiveness of our approach and its potential to enhance traffic safety in real-world applications.
[1] R.-J. Wang, H.-R. Lai, S.-J. Wang, Y.-H. Kuo, C.-H. Wang, W.-T. Chen, and D.-N.Yang, “Adverse Event Prevention on The Road System with Collaborative MEC,” in Proceedings of 2023 IEEE 97th Vehicular Technology Conference (VTC2023Spring), Jun. 2023, pp.1–7.
[2] Z. Wang, R. Gupta, K. Han, H. Wang, A. Ganlath, N. Ammar, and P. Tiwari, “Mobility Digital Twin: Concept, Architecture, Case Study, and Future Challenges,” IEEE Internet of Things Journal, vol. 9, no. 18, Sep. 2022, pp. 17452–17467.
[3] C. Hu, W. Fan, E. Zeng, Z. Hang, F. Wang, L. Qi, and M. Z. A. Bhuiyan, “Digital Twin-Assisted Real-Time Traffic Data Prediction Method for 5G-Enabled Internet of Vehicles,” IEEE Transactions on Industrial Informatics, vol. 18, no. 4, Apr. 2022, pp. 2811–2819.
[4] A. Kumar, G. Brazil, E. Corona, A. Parchami, and X. Liu, “DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection,” in Proceedings of Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part IX, Tel Aviv, Israel: Springer-Verlag, Oct. 2022, pp. 664–683.
[5] Z. Qin, J. Wang, and Y. Lu, “MonoGRNet: A General Framework for Monocular 3D Object Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, Sep. 2022, pp. 5170–5184.
[6] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, Oct. 2017, pp. 1255–1262.
[7] F. Schnicke, D. Espen, P. Oliveira Antonino, and T. Kuhn, “Architecture Blueprint Enabling Distributed Digital Twins,” in Proceedings of the 7th Conference on the Engineering of Computer Based Systems, ser. ECBS 2021, Novi Sad, Serbia: Association for Computing Machinery, May 2021, pp. 1–8.
[8] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The Age of Incorrect Information: A New Performance Metric for Status Updates,” IEEE/ACM Transactions on Networking, vol. 28, no. 5, Oct. 2020, pp. 2215–2228.
[9] L. Yang, Y. Zou, S. Shen, P. Wang, D. Yu, and X. Cheng, “A fault-tolerant communication algorithm for age-of-information optimization in ditens,” IEEE Transactions on Communications, vol. 72, no. 5, May 2024, pp. 2851–2864.
[10] X. Liang, W. Liang, Z. Xu, Y. Zhang, and X. Jia, “Multiple Service Model Refreshments in Digital Twin-Empowered Edge Computing,” IEEE Transactions on Services Computing, Dec. 2023, pp. 1–15.
[11] A. Maatouk, M. Assaad, and A. Ephremides, “Semantics-Empowered Communications Through the Age of Incorrect Information,” in Proceedings of ICC 2022 - IEEE International Conference on Communications, May 2022, pp. 3995–4000.
[12] J. Chen, J. Wang, C. Jiang, and J. Wang, “Age of Incorrect Information in Semantic Communications for NOMA Aided XR Applications,” IEEE Journal of Selected Topics in Signal Processing, vol. 17, no. 5, Sep. 2023, pp. 1093–1105.
[13] S. Aggarwal, M. A. uz Zaman, M. Bastopcu, and T. Ba¸sar, “Large Population Games with Timely Scheduling over Constrained Networks,” in Proceedings of 2023 American Control Conference (ACC), May 2023, pp. 4772–4778.
[14] S. Wenkel, K. Alhazmi, T. Liiv, S. Alrshoud, and M. Simon, “Confidence Score: The Forgotten Dimension of Object Detection Performance Evaluation,” Sensors, vol. 21,
no. 13, Jun. 2021.
[15] L. He, X. Liao, W. Liu, X. Liu, P. Cheng, and T. Mei, “FastReID: A Pytorch Toolbox for General Instance Re-identification,” in Proceedings of the 31st ACM International Conference on Multimedia, ser. MM ’23, Ottawa ON, Canada: Association for Computing Machinery, Oct. 2023, pp. 9664–9667.
[16] L. Huang, H. Jiang, Z. Zhang, Z. Yan, and H. Guo, “Efficient Data Traffic Forwarding for Infrastructure-to-Infrastructure Communications in VANETs,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 3, Mar. 2018, pp. 839–853.
[17] J. Xu, H. Wang, and L. Chen, “Bandwidth Allocation for Multiple Federated Learning Services in Wireless Edge Networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 4, Apr. 2022, pp. 2534–2546.
[18] R. Birkl, D. Wofk, and M. Müller, “MiDaS v3.1 – A Model Zoo for Robust Monocular Relative Depth Estimation,” arXiv preprint, Jul. 2023.
[19] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 36.331, Apr. 2017, Version 14.2.2.
[20] D. A. Pokamestov, Y. V. Kryukov, I. Kanatbekuli, E. V. Rogozhnikov, and R. R. Abenov, “Modulation and coding scheme in SCMA communication system,” Journal of Physics: Conference Series, vol. 2373, Dec. 2022, pp. 52028–52035.
[21] R.-J. Wang, C.-H. Wang, G.-S. Lee, D.-N. Yang, W.-T. Chen, and J.-P. Sheu, “Resource Allocation in 5G with NOMA-based Mixed Numerology Systems,” in Proceedings of GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Dec. 2020, pp. 1–6.
[22] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO,” version 8.0.0, Jan. 2023. [Online]. Available: https://github.com/ultralytics/ultralytics.
[23] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: the KITTI dataset,” The International Journal of Robotics Research, vol. 32, Sep. 2013, pp. 1231–1237.
[24] H.-S. Liao, P.-Y. Chen, and W.-T. Chen, “An Efficient Downlink Radio Resource Allocation with Carrier Aggregation in LTE-Advanced Networks,” IEEE Transactions on Mobile Computing, vol. 13, no. 10, Oct. 2014, pp. 2229–2239.
[25] C. Yao, H. Zhang, J. Zhu, D. Fan, Y. Fang, and L. Tang, “ORB Feature Matching Algorithm Based on Multi-Scale Feature Description Fusion and Feature Point Mapping Error Correction,” IEEE Access, vol. 11, Jun. 2023, pp. 63808–63820.
[26] T. Ivanescu, H. Yetgin, G. V. Merrett, and M. El-Hajjar, “Multi-Source Multi-Destination Hybrid Infrastructure-Aided Traffic Aware Routing in V2V/I Networks,” IEEE Access, vol. 10, Nov. 2022, pp. 119956–119969.