簡易檢索 / 詳目顯示

研究生: 凌宏宗
Hung-Tzung Ling
論文名稱: 單自旋金屬CrO2之成長與圖紋化以製備奈米碳管自旋閥
Growth and patterning of CrO2 half metal for carbon nanotube spin valves
指導教授: 邱博文
Po-Wen Chiu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 89
中文關鍵詞: 自旋單自旋金屬CrO2奈米碳管自旋閥
外文關鍵詞: CrO2, spin, half metal, nanotubes, spin valve
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電晶體於 1957 年被 Shockly、Bardeen 和 Brattain 發明,隨著時間的演進,電晶體尺寸的微縮,操作電壓與功率耗損逐漸微縮下降,電晶體的尺寸已進入了奈米的尺度。昔日長久以來不斷地微縮光罩尺寸,原先``由上而下'' (top-down) 的製程概念,漸漸地因製成的極限遇到了瓶頸,近來因而轉換為 ``由下而上'' (bottom-up) 的概念,直接使用先天上奈米尺度的材料來製作元件,材料介的新寵兒奈米碳管 (carbon nanotubes)、奈米線 (nanowires) 都是先天上很好奈米尺度的材料。本論文中的元件,將引用奈米碳管做為元件的通道,以取代電子反轉層 (Inversion layer) 在以往場效電晶體 (MOSFET) 的通道的角色。傳統場效電晶體中,以閘極 (Gate) 電壓來控制橫向電場的電流,電荷的流動來分辨元件的導通或關閉,一直忽略了電子的另一自由度 ``自旋'' (Spin);電子擁有自旋向上 (Spin up) 與自旋向下 (Spin down) 兩種,在加磁場施予下磁性材料中的電子被極化成單一方向,注入於通道中,藉此利用辨識自旋的方向重新定義元件的開關。

    利用奈米碳管做為通道,研究電子自旋傳輸始於 1999 年,多數的研究以鈷鎳或鎳鐵合金等磁性金屬做為電極,注入極化電子。本論文則用奈米碳管優良的傳輸特性與提高通道電子自旋極化率的單自旋金屬\cro 電極結合,這是前所未見的實驗。首章初談磁性材料與奈米碳管的特性,第二章介紹自旋電子學,包含磁阻、自旋散射、單自旋金屬、自旋極化率以及自旋傳輸,第三章介紹實驗的製成步驟,第四章是成長出\cro 薄膜的特性測量與自旋元件的量測,第五章為結論。


    1 導論 3 1.1 磁性物質及其物理現象 3 1.2 奈米碳管 6 1.3 奈米碳管得能帶結構 9 1.4 奈米碳管得製備 13 2 自旋電子學與自旋傳輸 17 2.1 磁阻現象與自旋元件 18 2.1.1 磁阻現象 18 2.1.2 自旋電晶體 19 2.2 電導值不批配的問題 21 2.3 單自旋金屬 CrO2 25 2.4 自旋極化率的量測 - Andreev reection 26 2.5 自旋傳輸的量測 29 2.5.1 局部性 (Local) 量測 32 2.5.2 非局部性 (Nonlocal) 量測 33 2.6 奈米碳管自旋傳輸之相關研究 35 3 實驗過程 37 3.1 CrO2 薄膜的成長 37 3.2 元件製成步驟 40 3.2.1 試片的清潔 (Preclean) 41 3.2.2 光學微影 (Optical lithography) 41 3.2.3 金屬沈積 (Metal deposition) 42 3.2.4 電子束微影 (Electron-beam lithography) 43 3.2.5 蝕刻 (Etching) 44 3.2.6 奈米碳管得沈積 (Carbon nanotubes deposition) 53 3.3 自旋閥元件的製作 54 3.3.1 蝕刻研磨方式定義 CrO2 之圖形 54 3.3.2 選擇性區域成長定義 CrO2 之圖形 59 4 元件的量測 63 4.1 CrO2 薄膜之特性 63 4.1.1 CrO2 薄膜 SEM 影像 63 4.1.2 晶格結構 XRD 分析 67 4.1.3 磁學特性 SQUID 分析 72 4.1.4 電阻特性 75 4.2 磁阻特性之量測 76 5 結論 81 參考文獻 82 附錄一:電導值 87 附錄二:矽之電阻率 89

    [1] Cheng, D. K. Field and wave electromagnetics (Addison-Wesley,1989).
    [2] 蔡信行, 奈米科技導論:基本原理及應用(新京文開發, 2004).
    [3] Chiu, P. W. Introduction to Nanoelectronic Devices (2005).
    [4] Seidel, D.-I. R. V. Carbon Nanotube Devices. Ph.D. thesis, Fakultät Maschinenwesen der Technischen Universitat Dresden (2004).
    [5] Waser, R. Nanoelectronics and information technology (Wiley,2005).
    [6] Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).
    [7] Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a di usive semiconductor. Phys. Rev. B 62, R4790 (2000).
    [8] Rashba, E. I. Theory of electrical spin injection tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62,R16267 (2000).
    [9] Fert, A. & Ja res, H. Conditions for ecient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).
    [10] Schmidt, G. & Molenkamp, L. W. A loadline method for determining the eciency of spin injection contacts. Semicond. Sci. Technol. 19, 1161 (2004).
    [11] 林展暘, 奈米碳管之自旋注入和自旋傳輸相關之研究. Master's thesis, 清華大學 (2007).
    [12] Coey, J. M. D. & Venkatesan, M. Half-metallic ferromagnetism: Example of CrO2 (invited). J. Appl. Phys. 91, 8345 (2002).
    [13] Jr., R. J. S. et al. Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85 (1998).
    [14] R. J. Soulen, J. et al. Andreev refection: A new means to determine the spin polarization of ferromagnetic materials. J. Appl. Phys. 85, 4589 (1999).
    [15] Meservey, R. & Tedrow, P. M. Spin-polarized electron tunneling. Phys. Rep. 238, 173 (1994).
    [16] Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713 (2002).
    [17] Schmidt, G. & Molenkamp, L. W. Spin injection into semiconductors, physics and experiments. Semicond. Sci. Technol. 17, 310 (2002).
    [18] Jedema, F. J., Nijboer, M. S., Filip, A. T. & van Wees, B. J. Spin injection and spin accumulation in all-metal mesoscopic spin valves. Phys. Rev. B 67, 085319 (2003).
    [19] Jedema, F. J., Nijboer, M. S., Filip, A. T. & vanWees, B. J. Spin injection and spin accumulation in permalloy-copper mesoscopic spin valves. J. Supercond. 15, 27 (2002).
    [20] Jedema, F. J., Filip, A. T. & vanWees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 401, 345 (2001).
    [21] Tsukagoshi, K., Alphenaar, B. W. & Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572 (1999).
    [22] Zhao, B., Monch, I., Vinzelberg, H., hl, T. M. & Schneider, C. M. Spin-coherent transport in ferromagnetically contacted carbon nanotubes.
    Appl. Phys. Lett. 80, 3144 (2002).
    [23] Kim, J.-R., So, H. M. & Kim, J.-J. Spin-dependent transport properties in a single-walled carbon nanotube with mesoscopic Co contact. Phys. Rev. B 66, 233401 (2002).
    [24] Nagabhirava, B., Bansal, T., Sumanasekera, G. U. & Alphenaar, B. W. Gated spin transport through an individual single wall carbon nanotube. Appl. Phys. Lett. 88, 023503 (2006).
    [25] Tombros, N., van der Molen, S. J. & van Wees, B. J. Separating spin and charge transport in single-wall carbon nanotubes. Phys. Rev. B 73, 233403 (2006).
    [26] Plummer, J. D., Deal, M. D. & Grin, P. B. Silicon VLSI Technology: Fundamentals, Practice, and Modeling (Tom Robbins, 2000).
    [27] Gupta, A., Li, X. W., Guha, S. & Xiao, G. Selective-area and lateral overgrowth of chromium dioxide(CrO2) lms by chemical vapor
    deposition. Appl. Phys. Lett. 75, 2996 (1999).
    [28] Li, X. W., Gupta, A., McGuire, T. R., Duncombe, P. R. & Xiao, G. Magnetoresistance and hall e ect of chromium dioxide epitaxial thin lms. J. Appl. Phys. 85, 5585 (1999).
    [29] Ivanov, P. G., Watts, S. M. & Lind, D. M. Epitaxial growth of CrO2 thin lms by chemical-vapor deposition from a Cr8O21 precursor. J. Appl. Phys. 89, 1035 (2001).
    [30] Rabe, M. et al. Growth and magnetotransport study of thin ferromagnetic CrO2 lms. J. Phys. 14, 7 (2002).
    [31] Zhang, Q. et al. Magnetization reversal of CrO2 nanomagnet arrays. J. Appl. Phys. 96, 7527 (2004).
    [32] König, C. et al. Micromagnetism and magnetotransport properties of micron-sized epitaxial CrO2(100) wires. Phys. Rev. B 75, 144428 (2007).
    [33] Zoua, X. & Xiao, G. Magnetic domain con gurations of epitaxial chromium dioxide CrO2 nanostructures. Appl. Phys. Lett. 91,113512 (2007).
    [34] van der Pauw, L. J. A method of measuring speci c resistivity and hall e ect of discs of arbitrary shape. Philips Res. Repts 13, 1-9 (1958).
    [35] Muller, R. S. & Kamins, T. I. Device Electronics for Integrated Circuits (Wiley, 2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE