簡易檢索 / 詳目顯示

研究生: 陳威彤
Chen, Wei-Tung
論文名稱: 有機發光二極體製程改善與效率提升
The Process and Performance Improvement of the Organic Light-Emitting Diodes
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 孟心飛
Meng, Hsin-Fei
趙宇強
Chao, Yu-Chiang
陳俐吟
Chen, Li-Yin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 溶液製程刮刀塗佈電子傳輸材料
外文關鍵詞: solution-processed, blade coating, electron transport material
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文採用溶液製程之技術,配合刮刀塗佈法製作有機發光二極體元件,若與真空蒸鍍製程相比,成本將能降低許多。隨著科技進步,有機發光二極體憑藉著自身的特色,在現今市場上已具有不容小覷的地位,生活中時常能見到使用有機發光二極體作為夜間照明設備的例子。但若其光源含有藍光之成分,將會抑制褪黑激素分泌,致使睡意降低,導致失眠發生,因此若能將光源中之藍光波段發光強度降低,並使元件發光效率提升,那可謂是再好不過。
      首先將對元件進行色光調整,降低藍光波段發光強度,減少致使失眠發生可能,盼能製作出無藍光之紅磷光小夜燈元件。接著將對元件進行性能改善,藉由同時使用ETM–N04以及SPPO13作為電子傳輸材料,提高元件發光效率,並以四種刮塗下藥量以及四種刮塗基板溫度作比較,盼能找出最佳製程參數。最後將對元件進行量產概論,闡述蒸鍍CsF厚度對元件亮度之影響,並且測試綠光客發光體材料PEG–N01以及主發光體材料EPH–N02。


      This thesis introduces blade coating technique into the solution process to produce the organic light-emitting diodes(OLEDs), which can cost much lower than the vacuum evaporation process. Today, we can find many OLED products in our lives, including night lighting equipment. However, if the light source contains blue light, it will inhibit the secretion of melatonin, which will lead humans to insomnia. Therefore, it couldn't be better if we can simultaneously reduce the luminous intensity of blue light and improve the performance of OLED device.
      First, we will adjust the color of the device to reduce the luminous intensity of blue light. Second, we will improve the performance of the OLED device by using both ETM–N04 and SPPO13 as the electron transport material, then compare four kinds of blade coating doses and baking sheet temperature to find the best process parameter. In the end, we will give an overview of the device mass production, then test the green light guest emitter material PEG–N01 and host emitter material EPH–N02.

    摘要..........i Abstract..........ii 致謝..........iii 目錄..........v 圖目錄..........vii 表目錄..........x 第一章、緒論..........1  1.1前言..........1  1.2有機發光二極體發展史..........1  1.3研究目的..........2  1.4論文架構..........2 第二章、有機發光二極體之元件結構與發光原理..........3  2.1元件結構..........3  2.2發光原理..........4  2.3螢光與磷光..........5  2.4主客發光體之能量轉移..........6   2.4.1輻射能量轉移..........7   2.4.2非輻射能量轉移..........7 第三章、有機發光二極體之元件製程與材料簡介..........9  3.1元件製程..........9   3.1.1基板蝕刻..........9   3.1.2薄膜刮塗..........11   3.1.3蒸鍍封裝..........14   3.1.4電性量測..........17  3.2材料簡介..........19   3.2.1電洞注入材料..........19   3.2.2電洞傳輸材料..........20   3.2.3客發光體材料..........21   3.2.4主發光體材料..........23 第四章、實驗設計與結果分析..........26  4.1有機發光二極體-中面積紅磷光元件-色光調整..........26   4.1.1波包消除..........26   4.1.2色光調整..........32  4.2有機發光二極體-中面積紅磷光元件-性能改善..........38   4.2.1發光層電子傳輸材料..........38   4.2.2發光層刮塗下藥量比較..........45   4.2.3發光層刮塗基板溫度比較..........51  4.3有機發光二極體-中面積紅磷光元件-量產概論..........59   4.3.1蒸鍍CsF厚度調整..........60  4.4綠光材料測試..........61   4.4.1客發光體PEG–N01與主發光體EPH–N02材料測試..........61   4.4.2客發光體〖Ir(mppy)〗_3與PEG–N01電性比較..........67 第五章、實驗結論與未來展望..........73 第六章、參考文獻..........75

    [1] M. Pope, H. Kallmann, and P. Magnante, "Electroluminescence in organic crystals," The Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-2043, 1963.
    [2] W. Helfrich and W. Schneider, "Recombination radiation in anthracene crystals," Physical Review Letters, vol. 14, no. 7, p. 229, 1965.
    [3] C. W. Tang, S. A. VanSlyke, and C. H. Chen, "Electroluminescence of doped organic thin films," Journal of Applied Physics, vol. 65, no. 9, pp. 3610-3616, 1989.
    [4] L. Duan, D. Zhang, K. Wu, X. Huang, L. Wang, and Y. Qiu, "Controlling the Recombination Zone of White Organic Light‐Emitting Diodes with Extremely Long Lifetimes," Advanced Functional Materials, vol. 21, no. 18, pp. 3540-3545, 2011.
    [5] 陳金鑫 and 黃孝文, "夢幻顯示器: OLED 材料與元件, 初版," ed: 台灣, 五南 圖書出版, 民國九十六年.
    [6] M. A. Baldo, D. O’brien, M. Thompson, and S. Forrest, "Excitonic singlet-triplet ratio in a semiconducting organic thin film," Physical Review B, vol. 60, no. 20, p. 14422, 1999.
    [7] M. Klessinger and J. Michl, Excited states and photochemistry of organic molecules. VCH publishers, 1995.
    [8] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, and R. C. Kwong, "High-efficiency red electrophosphorescence devices," Applied Physics Letters, vol. 78, no. 11, pp. 1622-1624, 2001.
    [9] R. Holmes, B. D’Andrade, S. Forrest, X. Ren, J. Li, and M. Thompson, "Efficient, deep-blue organic electrophosphorescence by guest charge trapping," Applied Physics Letters, vol. 83, no. 18, pp. 3818-3820, 2003.
    [10] C.-L. Lee, K. B. Lee, and J.-J. Kim, "Polymer phosphorescent light-emitting devices doped with tris (2-phenylpyridine) iridium as a triplet emitter," Applied Physics Letters, vol. 77, no. 15, pp. 2280-2282, 2000.
    [11] V. Cleave, G. Yahioglu, P. L. Barny, R. H. Friend, and N. Tessler, "Harvesting singlet and triplet energy in polymer LEDs," Advanced Materials, vol. 11, no. 4, pp. 285-288, 1999.
    [12] J. Kido, H. Hayase, K. Hongawa, K. Nagai, and K. Okuyama, "Bright red light‐ emitting organic electroluminescent devices having a europium complex as an emitter," Applied physics letters, vol. 65, no. 17, pp. 2124-2126, 1994.
    [13] C. Wu, C. Wu, J. Sturm, and A. Kahn, "Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices," Applied Physics Letters, vol. 70, no. 11, pp. 1348-1350, 1997.
    [14] 王文生 and 陳方中, "偏極化高分子發光二極體之研究," 2006.
    [15] W. Kim, A. Mäkinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. Kafafi, "Molecular organic light-emitting diodes using highly conducting polymers as anodes," Applied Physics Letters, vol. 80, no. 20, pp. 3844-3846, 2002.
    [16] H. Shi, C. Liu, Q. Jiang, and J. Xu, "Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review," Advanced Electronic Materials, vol. 1, no. 4, p. 1500017, 2015.
    [17] T. M. Brown, J.-S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, "Builtin field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly (3, 4-ethylene dioxythiophene) hole injection layer," Applied Physics Letters, vol. 75, no. 12, pp. 1679-1681, 1999.
    [18] M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, "Water vapor and oxygen degradation mechanisms in organic light emitting diodes," Advanced Functional Materials, vol. 11, no. 2, pp. 116-121, 2001.
    [19] Z. Zhu et al., "Polyfluorene derivatives are high‐performance organic hole‐ transporting materials for inorganic− organic hybrid perovskite solar cells," Advanced Functional Materials, vol. 24, no. 46, pp. 7357-7365, 2014.
    [20] D. Liu, R. O. Orozco, and T. Wang, "Deviations of the glass transition temperature in amorphous conjugated polymer thin films," Physical Review E, vol. 88, no. 2, p. 022601, 2013.
    [21] M. Baldo, S. Lamansky, P. Burrows, M. Thompson, and S. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Applied Physics Letters, vol. 75, no. 1, pp. 4-6, 1999.
    [22] L. Hung and C. Chen, "Recent progress of molecular organic electroluminescent materials and devices," Materials Science and Engineering: R: Reports, vol. 39, no. 5-6, pp. 143-222, 2002.

    QR CODE