簡易檢索 / 詳目顯示

研究生: 林哲宇
Che-Yu Lin
論文名稱: 正多面體的星狀多面體
Stellations of the regular polyhedron
指導教授: 全任重
Jen-Chung Chuan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 54
中文關鍵詞: 星狀多面體正多面體克卜勒多面體
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 關於正多面體的星狀多面體,正四面體以及正六面體的星狀多面體並不存在。正八面體的星狀多面體是唯一的,名為stella octangula,它是由兩個正四面體結合而成。而正十二面體的星狀多面體共有三個。Coxeter 在1982 證明了正二十面體的星狀多面體共有58個。
    克布勒多面體是由三個正十二面體的星狀多面體以及一個正二十面體的星狀多面體組成。
    本論文透過3D動態幾何軟體Cabri 3D呈現出星狀多面體的幾何架構以及其作圖方法,總共分為四個章節。在以下網站中你可以很清楚地看到詳盡的介紹:
    http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/943204/Stellation/stellated polyhedrons.htm
    透過這個網站,每個人都可以很容易地看到我的研究成果以及動態幾何軟體的應用與發展。


    There are no stellations of the cube or tetrahedron . The only stellated form of the octahedron is the stella octangula, which is a compound of two tetrahedra. There are three dodecahedron stellations: the small stellated dodecahedron, great dodecahedron, and great stellated dodecahedron . Coxeter et al. (1982) shows that 58 icosahedron stellations exist (although Coxeter et al. include the icosahedron itself in their count, for a total of 59), subject to certain restrictions.
    The Kepler-Poinsot solids consist of the three dodecahedron stellations and one of the icosahedron stellations .
    This paper presents the design of Polyhedron under Cabri3D, interactive dynamic software of geometry. It is divided into four sections. You can crystal clearly to discover the detail in the website:
    http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/943204/Stellation/stellated polyhedrons.htm
    Here you can see the production of this study and application of 3D dynamic geometry.

    I. Abstract                 ....1 II. Preface              ....2 III. Contents ....3 IV. Preliminaries ....4 V. Section 1 : Stellations of octahedron ....5 VI. Section 2 : Kepler-Poinsot solid ....7 VII. Section 3 : Stellations of Icosahedron stellations ....16 VIII. Section 4 : Rhombic triacontahedron stellations ....41 IX. References ....54

    [1.] Wenninger, M. J. "Dual Models ", 1983, Cambridge University Press.

    [2.] Williams, Robert, "The Geometrical Foundation of Natural Structure: A Source Book of Design ", 1979, Dover Publications.

    [3.] http://www.ylmass.edu.hk/~mathsclub/ILC/Polyhedra/

    [4.] http://mathworld.wolfram.com/Stellation.html

    [5.] http://mathworld.wolfram.com/IcosahedronStellations.html

    [6.] http://en.wikipedia.org/wiki/Echidnahedron

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE