簡易檢索 / 詳目顯示

研究生: 張凱傑
Chang, Kai Chieh
論文名稱: CMOS-MEMS熱電式紅外線感測器設計與實現
Design and Implementation of CMOS-MEMS Thermoelectric Infrared Sensor
指導教授: 方維倫
Fang, Weileun
口試委員: 李昇憲
Li, Sheng Shian
孫志銘
Sun, Chih Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 100
中文關鍵詞: CMOS-MEMS熱電式紅外線感測器熱電效應
外文關鍵詞: CMOS-MEMS, thermoelectric, infrared sensor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將以TSMC CMOS 0.35µm 2P4M標準製程當作製作平台,製作一CMOS-MEMS熱電式紅外線感測器,著重於熱電偶與吸收層結構設計,並提出利用特殊的蝕刻孔道排列方式,切斷原有的熱傳路徑,並使熱依照設計方向進行熱傳改變熱傳距離,在相同的感測器尺寸、相同的材料、相同的雜訊大小下增加感測器的響應度,期望透過結構的設計有效提升感測器的訊雜比,並設計一對照組以驗證設計概念。設計過程中透過理論分析與ANSYS有限元素模擬軟體協助計算響應度、等下雜訊電壓等參數,並將晶片透過後製程製作出結構,以實現一高靈敏度熱電式紅外線感測器。


    This study implements a thermoelectric infrared sensor using TSMC 0.35µm 2P4M standard CMOS process to discuss the distribution of releasing holes affect the performance of the sensor. In MEMS device, releasing holes design is related to the time takes in the releasing process. However, the distribution of the releasing holes may affect the heat transfer path and changed the sensor performance. In this study, a CMOS-MEMS thermoelectric infrared sensor with strip-via releasing holes is designed for high responsivity when operating at low pressure and an existing design as comparison. The discrete releasing holes spread on the absorber membrane as existing design. Strip-via releasing holes split the absorber membrane into serpentine shape as proposed type. The thermocouples are a composite of two poly structure connected by metal1 and patterned along with the absorber membrane. In comparison, the design with strip-via releasing holes will increase responsivity 6.2 times faster than the existing design at low pressure. Moreover, the proposed design has the responsivity of 146.4VW-1, detectivity of 0.29*108cmHz0.5W-1 at 25mtorr and response time of 25.9ms.

    中文摘要 I Abstract II 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 文獻回顧 4 1-3-1 CMOS-MEMS製程 4 1-3-2 紅外線感測器 5 1-3-3 熱電式紅外線感測器 7 1-4 發展趨式 10 1- 5 研究目標與架構 11 第二章 感測原理分析 23 2-1 熱電效應 23 2-2 熱電優值 24 2-3 熱輻射理論分析 25 2-4 感測器規格參數 28 2-5 熱電偶數目與元件響應度關係 30 第三章 元件設計與分析 37 3-1 設計考量 37 3-2 結構設計 39 3-3 感測電路設計 42 第四章 製程結果與量測分析 48 4-1 元件製程與結果 48 4-2 量測分析 52 4-2-1 材料特性量測 52 4-2-2 元件特性量測 54 第五章 結論與未來工作 78 5-1 結論 78 5-2 未來工作 79 參考文獻 90 附錄A 95

    [1]R. P. Feynman, “There's plenty of room at the bottom,” Journal of Microelectromechanical Systems, vol. 1, pp. 60-66, 1992.
    [2]Nintendo, www.nintendo.com
    [3]Yole Développement, www.i-micronews.com/reports/mems-sensors-report.html
    [4]Texas Instruments, Inc., www.ti.com
    [5] Melexis Microelectronic integrated systems, www.melexis.com
    [6]H. Baltes, O. Brand, G. K. Fedder,C. Hierold, J. Korvink, and O. Tabata, CMOS MEMS: Advanced Micro and Nanosystems, vol.2, Weinheim, Germany, John Wiley&Sons Inc, 2005.
    [7]J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, and P. J. McWhorter,” Embedded micromechanical devices for the monolithic integration of MEMS with CMOS,” Int. Electron Devices Meeting, Washington, DC, Dec., 1995.
    [8] G. K. Fedder, “CMOS-based sensors,” IEEE Sensors Conf., Irvine, CA, Oct., 2005, pp. 125-128.
    [9] Wikipedia, https://en.wikipedia.org/wiki/Infrared/
    [10]FLIR system, www.flir.com
    [11]Antoni Rogalski, "Infrared detectors: status and trends," Progress in quantum electronics, vol.27, 2003, pp. 59-210.
    [12]F. Forsberg, A. Lapadatu, G. Kittilsland, S. Martinsen, N. Roxhed, A.C. Fischer, G. Stemme, B. Samel, P. Ericsson, N. Hoivik, T. Bakke, M. Bring, T. Kvisteroy, A. Ror, F. Niklaus, “CMOS-Integrated Si/SiGe Quantum-Well Infrared Microbolometer Focal Plane Arrays Manufactured With Very Large-Scale Heterogeneous 3-D Integration,” IEEE Journal of Selected Topics in Quantum Electronics, vol.21, 2700111, 2015.
    [13]Arnold Daniels, "Field Guide to Infrared Systems, Detectors, and FPAs." SPIE, 2010.
    [14]Dehui Xu, Bin Xiong, and Yuelin Wang,” Self-aligned thermoelectric infrared sensors with post-CMOS micromachining,” IEEE Electron Device Letters, vol.31, pp. 512-514, 2010.
    [15] A.W. Van Herwaarden, and P. M. Sarro. "Thermal sensors based on the Seebeck effect." Sensors and Actuators , vol.10, pp. 321-346, 1986.
    [16]Marc C. Foote, "Temperature stabilization requirements for unchopped thermal detectors." AeroSense'99. International Society for Optics and Photonics, 1999.
    [17]Hirota, Masaki, Yoshimi Ohta, and Yasuhiro Fukuyama, "Low-cost thermo-electric infrared FPAs and their automotive applications." SPIE Defense and Security Symposium. International Society for Optics and Photonics, 2008.
    [18]Omron, www.omron.com
    [19]J. T. Cox, G. Hass, and G. F. Jacobus,” Infrared filters of antireflected Si, Ge, InAs, and InSb,” Journal of the Optical Society of America, vol. 51, pp. 714-718, 1961.
    [20]Excelitas Technologies, www.excelitas.com/Pages/Product/Thermal-Infrared-Detectors.aspx
    [21]M. Muller, W. Budde, R. Gottfried-Gottfried, A. Hubel, R. Jahne, and H. Kuck, ”A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor,” Proc. 8th Int. Conf. on Solid-State Sensors and Actuators, Stockholm, Sweden, June, 1995, pp. 640-643.
    [22]Sarro P M, “Integrated silicon thermopile infrared detectors”, PhD Thesis, Delft Technical University, 1987.
    [23]E Socher, O Bochobza-Degani, and Y Nemirovsky,”A novel spiral CMOS compatible micromachined thermoelectric IR microsensor,” J. Micromech. Microeng., vol.11, pp. 574-576, 2001.
    [24]Huchuan Zhou, P Kropelnicki, J M Tsai, and Chengkuo Lee, ” CMOS-based thermopiles using vertically integrated double polycrystalline silicon layers,” IEEE 26th Int. Conf. on Micro Electro Mechanical Systems, Taipei, Taiwan, Jan., 2013, pp. 429-432.
    [25]J. Tanaka, M. Shiozaki, F. Aita, T. Seki, and M. Oba, ”Thermopile infrared array sensor for human detector application,” IEEE 27th Int. Conf. on Micro Electro Mechanical Systems, San Francisco, CA, Jan., 2014, pp. 1213-1216.
    [26]Mohammad J Modarres-Zadeh, and Reza Abdolvand,” High-responsivity thermoelectric infrared detectors with stand-alone sub-micrometer polysilicon wires,” Journal of Micromech. Microeng., vol.24, 125013, 2014.
    [27]Chung-Nan Chen,” Temperature error analysis and parameter extraction of an 8–14um thermopile with a wavelength-independent absorber for tympanic thermometer,” IEEE sensors Journal, vol.11, pp. 2310-2317, 2011.
    [28] John Lehman, Evangelos Theocharous, George Eppeldauer, and Chris Pannell, "Gold-black coatings for freestanding pyroelectric detectors," Measurement Science and Technology, vol. 14, 2003.
    [29] Louis Harris, Rosemary T. McGinnies, and Benjamin M. Siegel, " The Preparation and Optical Properties of Gold Blacks," JOSA, vol.38,pp. 582-589, 1948.
    [30]M. Ohira, Y. Koyama, F. Aita, S. Sasaki, M. Oba, T. Takahata, I. Shimoyama and M. Kimata,” Micro mirror arrays for improved sensitivity of thermopile infrared sensors,” IEEE 24th Int. Conf. on Micro Electro Mechanical Systems, Cancun, Mexico, Jan., 2011, pp. 708-711.
    [31]J. Schieferdecker, R. Quad, E. Holzenkämpfer, and M. Schulze, "Infrared thermopile sensors with high sensitivity and very low temperature coefficient." Sensors and Actuators A: Physical, vol. 47, pp. 422-427, 1995.
    [32]T. Geballe and G. Hull, "Seebeck effect in silicon," Physical Review, vol.98, no. 4, pp. 940-947, 1955.
    [33]Z. Dughaish, "Lead telluride as a thermoelectric material for thermoelectric power generation," Physica B, vol. 322, pp. 205-223, 2002.
    [34]Klein, Larry A., and Lawrence A. Klein. Millimeter Wave and Infrared Multisensor Design and Signal Processing. Artech House, Inc., 1997.
    [35]Akram I. Boukai, Yuri Bunimovich, Jamil Tahir-Kheli, Jen-Kan Yu, William A. Goddard III , and James R. Heath,” Silicon nanowires as efficient thermoelectric materials,” Nature, Jan., 2008, pp. 168-171.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE