簡易檢索 / 詳目顯示

研究生: 李子逸
Lee, Zu-Yi.
論文名稱: 多階層轉換器模組研製與故障在線更換
Design and Implementation of Modular Multilevel Converters with Hot-Swap Feature
指導教授: 吳財福
Wu, Tsai-Fu
口試委員: 鄭博泰
Cheng, Po-Tai
黃智方
Huang, Chih-Fang
陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 多階層模組化轉換器直接數位電流控制模組故障排除模組設計三相四線半橋模組
外文關鍵詞: modular multilevel converter, current control, phase-shifted PWM, double star, chopper cell, module unplug
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要基於電能平衡與電流追蹤法則,探討多階層模組化轉換器之擴充性設計、故障排除以及模組回插等功能。使用的控制法為直接數位控制,透過抵消考量 參數如直流鏈電壓、切換週期及電感變化對受控體的影響,來設計控制器並得到開關責任比率。
    藉由直接數位控制,模組可獨立控制自身電容電壓,在追蹤電流的同時將電感衰減納入考慮。控制法經推導後能以通式展現,並且在得知元件特性的情況下,將電感值隨電流變化和控制法則通式存放於控制器中。此控制法的優點在於設計可疊加性單一模組時,更能體現其價值。每台模組中皆建立獨立的控制器,並且自行計算開關責任比率,可以有效的減少模組之間所共用的架構與訊號,從而加強系統的模組化,以利於模組的疊加。
    系統模組化除提高可擴充性外,還具有加強系統適應性的優點。在發生故障時,且系統整體不離線的情況下,判斷故障的模組並且排除故障部分,亦或是將新的模組回插,也是一項隨著系統擴大而漸趨重要的部分。
    本研究將直接數位控制法應用於多階層模組化轉換器,並且介紹轉換器架構和控制法達成的各種功能。主要貢獻在探討模組故障排除與模組回插情況下的行為,並提高其可擴充性,進行單一模組的設計。


    This thesis presents fault resolution control principle, cell plug-in and module design of a modular multilevel converter (MMC) while emphasizing its system scalability as well as modularity. The proposed control strategy is a kind of direct current digital control. This control method can compensate the variation effects of dc voltage, switching period and inductance when calculating the duty ratios of switches in a controller.
    Through the direct current digital control, each module is able to control its own capacitor voltage and consider the inductance variation with its current. The control law can be formulated readily and saved into a controller, making it possible for inductance tabulation during programming. This advantage can be fully illustrated in the design of cascading modules for the controller itself which can be merged into every single module and let them calculate their own duty ratios of switches. This feature effectively reduces the component of signal transmission between local controller and the central controller, enhancing modularity of a system and benefiting to module cascading in higher voltage applications. Aside from increasing the scalability of a system, modularity also improves flexibility. Achieving module fault diagnosis and resolution while maintaining system online operation has become a critical part with continuous growth of system scale. System configuration and control methods of current tracking, voltage regulation and fault resolution have been presented. The major contributions of this research are investigating the behavior of MMC under fault resolution and redesigning the module structure based on system scaling purpose.

    目錄 摘 要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 多階層架構回顧 2 1.2.1 NPC架構 2 1.2.2 CCC架構 2 1.2.3 CHB架構 3 1.3 控制方法回顧 4 1.4 論文大綱 5 第二章 模組通訊架構設計 7 2.1 中央控制器 7 2.1.1 在線模組數量(發送/接收) 7 2.1.2 市電電壓偵測(發送) 8 2.1.3 市電訊號同步(發送) 9 2.1.4 電流命令(發送) 9 2.2 模組端控制器 9 2.2.1 電感電流偵測 9 2.2.2 在線模組數量偵測 9 2.2.3 電流命令接收 9 2.2.4 市電電壓接收 10 2.2.5 模組電容電壓偵測 10 第三章 模組電路架構與電流控制 11 3.1轉換器系統架構 11 3.2模組架構 12 3.3模組動作原理 13 3.4電流控制法則 15 3.4.1 電流命令定義 15 3.4.2 電感電流追蹤控制法 16 3.4.3 載波調變法 20 第四章 模組穩壓控制 23 4.1 模組電容穩壓法 23 4.2 模組電容電壓範圍 25 4.3 模組電容電壓表示式 26 第五章 模組電路設計 28 5.1 輔助電源 28 5.2 模組電壓回授電路 29 5.3 電流回授電路 30 5.4 開關驅動電路 31 5.5 繼電器驅動電路 32 5.6 市電電壓回授電路 33 5.7 硬體保護電路 35 5.8 光纖同步電路 35 5.9 輔助電源自我檢測電路 36 5.10 緊急停止開關電路 37 第六章 模組故障排除控制 38 6.1 模組故障判斷 38 6.1.1 模組電容 38 6.1.2 電感電流 39 6.1.3 輔助電源 40 6.2 故障排除電路 40 6.3 故障模組排除電路動作原理 40 6.3.1上臂故障模組排除電路動作分析 41 6.3.2下臂故障模組排除電路動作分析 46 6.4 模組電壓選擇 50 6.5 模組故障排除暫態行為模擬 51 6.6 模組故障排除實作驗證 54 第七章 模組回插系統控制 60 7.1 模組回插電路動作原理 60 7.1.1 上臂模組回插控制法 60 7.1.2 下臂模組回插控制法 62 7.1.3 充電電壓範圍 64 7.2 充電模組電壓估測 66 7.3 模組回插暫態行為模擬 70 7.4 模組回插實作驗證 76 第八章 結論與未來研究方向 80 參考文獻 82

    [1] N. M. Kangwa, C. Venugopal and I. E. Davidson, "A review of the performance of VSC-HVDC and MTDC systems," in Proc. IEEE PES, 2017, pp. 267-273.
    [2] S. Kouro et al., "Recent Advances and Industrial Applications of Multilevel Converters," in IEEE Trans. Industrial Electron., 2010,vol. 57, no. 8, pp. 2553-2580.
    [3] P. Ladoux, N. Serbia, L. Rubino and P. Marino, “Comparative study of variant topologies for MMC,” in Proc. SPEEDAM, 2014, pp. 659-664.
    [4] R. A. Krishna and L. P. Suresh, "A brief review on multilevel inverter topologies," in Proc. ICCPCT, 2016, pp. 1-6.
    [5] M. Carpaneto, M. Marchesoni and L. Vaccaro, “A new cascaded multilevel converter based on NPC cells,” in Proc. IEEE ISIE, 2007, pp. 1033-1038.
    [6] J. Rodrigues, S. Bernet, J. O. Pontt and S. Kouro, "Multilevel voltage sources converter topology for industrial medium voltage drives,” IEEE Trans. Industrial Electron., vol. 54, no. 6, pp. 2930-2945, 2007.
    [7] J. I. Y. Ota, T. Sato and H. Akagi, "Enhancement of Performance, Availability, and Flexibility of a Battery Energy Storage System Based on a Modular Multilevel Cascaded Converter (MMCC-SSBC)," in IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2791-2799, 2016.
    [8] P. H. Wu, Y. T. Chen and P. T. Cheng, "The Delta-Connected Cascaded H-Bridge Converter Application in Distributed Energy Resources and Fault Ride Through Capability Analysis," in IEEE Trans. Industry Applications, vol. PP, no. 99, pp.1-1
    [9] J. S. Lai and F. Z. Peng, "Multilevel converters-a new breed of power converters," in IEEE Transactions on Industry Applications, vol. 32, no. 3, pp. 509-517, May/Jun 1996.
    [10] N. Thitichaiworakorn, M. Hagiwara and H. Akagi, "Experimental Verification of a Modular Multilevel Cascade Inverter Based on Double-Star Bridge Cells," in IEEE Trans. Industry Applications, vol. 50, no. 1, pp. 509-519, 2014.
    [11] E. Behrouzian, M. Bongiorno and H. Z. De, "An overview of multilevel converter topologies for grid connected applications," 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, 2013, pp. 1-10.
    [12] S. Kouro, "Recent Advances and Industrial Applications of Multilevel Converters," in IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553-2580, Aug. 2010.
    [13] J. Rodriguez, J.-S. Lai and F. Z. Peng, "Multilevel inverters: a survey of topologies, controls, and applications," in IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724-738, Aug 2002.
    [14] H. Akagi, “Classification, terminology, and application of the modular multilevel cascade converter (MMCC),” in Proc. IPEC, 2010, pp. 508-515.
    [15] M. Hagiwara, R. Maeda and H. Akagi, "Control and Analysis of the Modular Multilevel Cascade Converter Based on Double-Star Chopper-Cells (MMCC-DSCC)," in IEEE Trans., Power Electron., vol. 26, no.6, pp.1649-1658, 2011.
    [16] S. Allebrod, R. Hamerski, R. Marquardt, "New transformerless scalable modular multilevel converters for HVDC-transmission,” in Proc. IEEE PESC, 2008, pp. 174-179.
    [17] K. Shi, F. Shen, D. Lv, P. Lin, M. Chen, and D. Xu, “A novel start-up scheme for modular multilevel converter,” in Proc. IEEE ECCE, 2012, pp. 4180–4187.
    [18] B. Li, Y. Zhang, R. Yang, R. Xu, D. Xu and W. Wang, "Seamless Transition Control for Modular Multilevel Converters When Inserting a Cold-Reserve Redundant Submodule," in IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4052-4057, Aug. 2015.

    QR CODE