簡易檢索 / 詳目顯示

研究生: 吳坤陽
Wu, Kun-Yang
論文名稱: 界面工程與奈米球微影技術應用於有機電子元件結構研究
Application of Interface Engineering and Nanosphere Lithography in the Organic Electronic Devices Fabrication
指導教授: 彭宗平
Perng, Tsong-Pyng
陶雨台
Tao, Yu-Tai
口試委員: 彭宗平
陶雨台
冉曉雯
吳志毅
李偉立
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 132
中文關鍵詞: 上發光式有機發光二極體自組裝單層分子薄膜空間電荷限制電晶體奈米球微影技術聚三己基塞吩
外文關鍵詞: Top-emitting OLED, self-assembled monolayer (SAM), space-charge limited transistor (SCLT), Nanosphere lithography (NSL), poly(3-hexylthiophene) (P3HT)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機電子元件的發展中,電極與有機半導體介面間的能階相對位置,對於電荷載子注入效率上一直扮演極其重要的角色。其中對於有機發光二極體元件(Organic light emitting diodes, OLEDs)的表現上,起始的電荷載子注入程度對於元件發光效率與元件壽命皆深具影響。並且可經由在電極表面上進行修飾或改質,於電極與有機半導體介面處引入不同方向或強度之電偶極,以調控介面能階相對位置。
    在本研究中,我們利用一系列具不同偶極性質之硫醇分子,將其吸附於金屬銀表面以製備出高秩序性之自組裝單層分子薄膜(self-assembled monolayers, SAMs)。其中所使用分子包含不同取代位置之氟取代苄基硫醇、不同鏈長之正烷基硫醇、末端氰基、末端三氟甲烷之取代烷基硫醇與兩種偶極方向相反的烷基硫醇 (正癸基硫醇與全氟化癸基硫醇)之二元混合系統,然後將其應用於上發光式有機發光二極體元件之陽極 (Top-emitting OLEDs)。並經由元件光電性質的量測與分析,判斷該修飾對元件內電洞載子注入效率的影響。
    首先我們顯示相同的取代基因取代位置的不同,造成吸附分子膜偶極方向的不同,可直接有效地調控金屬表面之功函數 (work function), 繼而改變載子於陽極與有機半導體介面處的注入能障。其次我們也顯示除了可藉由改變烷基硫醇分子的末端官能基取代來調
    IV
    整金屬表面功函數外,同時也可藉由絕緣的碳鏈長度的改變來調控位於介面的穿隧距離 (tunneling distance)。經過兩者(極性官能基與穿隧距離)交互調整的過程有效調控介面間的能階相對位置,從而分析元件中電子與電洞平衡狀況及對發光效率的影響。
    本研究並進一步以兩種偶極方向相反的烷基硫醇 (正癸基硫醇與全氟化癸基硫醇)製備自組裝二元混合分子薄膜 (mixed SAMs)修飾於金屬銀表面,藉由混合比例的改變,有效地且連續地調控其功函數變化(4.1 eV~5.8 eV)。後續將其應用於Top-emitting OLED的陽極,並搭配不同電洞傳輸材料(HTL)製作單載子(電洞)二極體元件 (Hole-only devices),或Top-emitting OLEDs 元件,由混合單分子層的混合比例對元件電荷注入效率、發光電流效率影響,分析改善電洞與電子載子數目平衡的方法。
    除此之外,針對有機半導體之自身載子遷移率 (carrier mobility)普遍不高以及傳統上使用有機薄膜電晶體驅動有機發光二極體在製程上的限制,我們朝向導電通道可大幅縮短的垂直式電晶體方向發展,以期降低電壓提升電流輸出。本研究利用奈米球微影製程技術(Nanosphere lithography, NSL),同時以聚氧化乙烯(poly(ethylene oxide))進行高分子架橋,以提升聚苯乙烯(polystyrene)奈米球自組裝的穩定性,從而製作大面積奈米孔洞陣列之鋁金屬閘極,並以聚三己
    V
    基塞吩 (poly(3-hexylthiophene), P3HT) 做為主動層材料,應用於製備垂直式空間電荷限制電晶體 (space-charge limited transistor, SCLT)。 本研究所製作之大面積規則陣列鋁基極之空間電荷限制電晶體,於低操作電壓 (-2.0V)下可有效獲得高電流密度輸出 (平均值為12 mA/cm2),元件操作最大開關比 (on-off ratio)則為 2*104,對於有機薄膜電晶體的性質提升有初步著實的成效。


    The energy level alignment between a metal and an organic semiconductor (M/O) is regarded as the dominant factor affecting carrier injection efficiency. In particular, it plays a crucial role in the performances of organic light emitting diodes (OLEDs) including electroluminance efficiency and life-time. Through electrode surface modification, the size and direction of the interface dipole can be introduced to modulate the energy alignment at the interface. In this study, a series of thiol compounds, including fluorine-substituted benzyl mercaptans, n-alkanethiol, cyano-terminated (CN-), trifluoro-terminated (CF3-), perfluroinated substituents and binary mixtures with opposite dipoles, were used to modify the silver anode through the formation of well-ordered self-assembled monolayers (SAMs) and applied in the fabrication of top-emitting electroluminescent devices. The device performances were measured and analyzed to understand the effect of modification on the charge injection.
    It is demonstrated that the same substituent placed at different positions on a phenyl ring results in different dipole moment and modulate the work function/charge injection differently. Furthermore we demonstrated that besides the dipolar functional group, the chain length of alkanethiol can be used to tune the tunneling distance for charge injection. Through selection of the two parameters (dipolar functional group and tunneling distance), the energy alignment can be fine-tuned and influence the charge balance and luminescence efficiency.
    VII
    Furthermore, SAMs of binary mixtures of n-decanethiol and the perfluorinated analogue were formed on silver surface. Through change of mixing ratio, the work function of silver can be tuned continuously over a wide range: from 4.1 eV to 5.8 eV. The mixed SAM-modified Ag surfaces were used as the anode in the fabrication of hole-only devices and electroluminescent devices using different hole-transporting materials (HTL). Through the analysis of charge injection efficiency/luminescence efficiency, strategy of improving hole/electron carrier balance is proposed.
    With generally low mobility associated with organic semiconductors and limitations on the fabrication involving lateral transistors as driving component, we also extended our work on vertical type transistors, which uses greatly reduced channel length to lower driving voltage and increase current output. A large-area and periodically patterned nanoporous Al grids with controlled pore size were fabricated by poly(ethylene oxide)-assisted self-assembly of polystyrene nanospheres. This grid layer was used as the base electrode in a space-charge limited transistor (SCLT) with vertical architecture. A high performance device with poly(3-hexylthiophene) (P3HT) as conducting semiconductor was achieved with a high on-current

    Part I Tuning hole-injection with self-assembled monolayer on silver electrode for top-emitting OLED applications Chapter 1 Introduction 1 1.1 Organic electronics 1 1.2 Organic light emitting diodes (OLEDs) 2 1.3 Interface engineering for OLEDs 12 1.4 Self-assembled monolayer technologies for OLEDs 19 Chapter 2 Motivation 25 Chapter 3 Experimental procedures 27 3.1 Preparation of Self-assembled Monolayer 27 3.2 The fabrication of OLEDs and TOLEDs 28 3.3 Reflection Adsorption Infrared Spectroscopy 30 3.4 Photoelectron Spectrometer, AC2 33 3.5 X-ray photoelectron spectroscopy 35 3.6 Atomic Force Microscopy 37 3.7 Scanning Electron Microscopy 39 3.8 X-ray Diffraction 42 3.9 Contact angle 42 3.10 Current-Voltage-Brightness characteristics 43 Chapter 4 Results and Discussion 45 4.1 The effect of SAM-modification of Ag electrode on the hole-injection/charge recombination in TOLEDs 45 4.2 Chain length effect on the hole-injection and charge recombination with SAM on Ag anode in TOLEDs 51 4.3 Odd-even modulation of electrode work function with self-assembled layer 58 IX 4.4 Continuous modulation of electrode work function with mixed self-assembled monolayers and its effect in charge injection 69 Chapter 5 Conclusion 88 Part II Poly(3-hexylthiophene)-based high-performance space-charge- limited transistors with well ordered nanoporous aluminum base electrode Chapter 6 Introduction 93 6.1 Vertical organic thin film transistors 93 6.2 Nanosphere lithography 102 Chapter 7 Motivation 105 Chapter 8 Experimental procedures 106 8.1 Preparation of PS nanosphere monolayer at water-air interface 106 8.2 Fabrication of periodically patterned and nano-channeled substrate for the SCLTs 107 8.3 Fabrication of P3HT-based SCLT devices 109 Chapter 9 Results and Discussion 111 9.1 Periodically patterned and nano-channeled substrate for the SCLTs 111 9.2 The effect of opening dimension on electric properties of SCLTs 124 Chapter 10

    1 Shinar, J., (Ed.), Organic light emitting devices: a survey, AIP press, New York, USA, 2001. 2 (a) Akamatsu, H.; Inokuchi, H.; Matsunaga, Y., Nature 1954, 173 ,168. (b) Pope, M.; Kallmann, H. P.; Magnante, P., J. Chem. Phys. 1963, 38, 2042.
    3 (a) Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; Macdiarmid, A. G., Phys. Rev. Lett. 1977, 39, 1098. (b) Chiang, C. K.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G., J. Chem. Phys. 1978, 69, 5098. (c) Garito, A. F.; Heeger, A. J., Accounts Chem. Res. 1974, 7, 232. (d) Sun, S. S.; Dalton, L. R., (Ed.), Introduction of organic electronic and optoelectronic materials and devices, CRC press, New York, USA, 2008.
    4 Heeger, A. J., Angew. Chem. Int. Ed. 2001, 40, 2591.
    5 (a) Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S. H.; Tseng, R., Nature 2006, 444, 913. (b) Malinsky, J. E.; Veinot, J. G. C.; Jabbour, G. E.; Shaheen, S. E.; Anderson, J. D.; Lee, P.; Richter, A. G.; Burin, A. L.; Ratner, M. A.; Marks, T. J.; Armstrong, N. R.; Kippelen, B.; Dutta, P.; Peyghambarian, N., Chem. Mater. 2002, 14, 3054. (c) Patel, N. K.; Cina, S.; Burroughes, J. H., Ieee J. Sel. Top. Quant. Electron. 2002, 8, 346. (d) Peet, J.; Senatore, M. L.; Heeger, A. J.; Bazan, G. C., Adv. Mater. 2009, 21, 1521.
    6 Tang, C. W.; Vanslyke, S. A., Appl. Phys. Lett. 1987, 51, 913.
    126
    7 (a) He, G. F.; Pfeiffer, M.; Leo, K.; Hofmann, M.; Birnstock, J.; Pudzich, R.; Salbeck, J., Appl. Phys. Lett. 2004, 85, 3911. (b) Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K., Appl. Phys. Lett. 1994, 64, 815. (c) Cho, H. J.; Jung, B. J.; Cho, N. S.; Lee, J.; Shim, H. K., Macromolecules 2003, 36, 6704.
    8 (a) Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Nature 1998, 395, 151. (b) Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Pure Appl. Chem. 1999, 71, 2095.
    9 Gu, G.; Forrest, S. R., Ieee J. Sel. Top. Quant. Electron. 1998, 4, 83.
    10 Schols, S., (Ed.), Device Architecture and Materials for Organic Light-Emitting Devices: Targeting High Current Densitiesand Control of the Triplet Concentration, Springer press, New York, 2011.
    11 Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., J. Appl. Phys. 2001, 90, 5048.
    12 (a) Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Nature 2000, 403, 750. (b) He, G. F.; Chang, S. C.; Chen, F. C.; Li, Y. F.; Yang, Y., Appl. Phys. Lett. 2002, 81, 1509. (c) Liu, S. Y.; Feng, J.; Zhao, Y., Jpn. J. Appl. Phys. Part 1 2004, 43, 2320.
    13 Wu, C. C.; Chen, C. W.; Lin, C. L.; Yang, C. J., J. Disp. Technol. 2005, 1, 248.
    14 http://www.howstuffworks.com/oled3.htm, c Howstuffworks 2005.
    15 (a) Hsu, S. F.; Lee, C. C.; Hwang, S. W.; Chen, C. H., Appl. Phys. Lett. 2005, 86, 253508. (b) Peng, H. J.; Zhu, X. L.; Sun, J. X.; Xie, Z.
    127
    L.; Xie, S.; Wong, M.; Kwok, H. S., Appl. Phys. Lett. 2005, 87,173505. (c) Lin, C. L.; Lin, H. W.; Wu, C. C., Appl. Phys. Lett. 2005, 87, 021101.
    16 (a) Ishii, H.; Hayashi, N.; Ito, E.; Washizu, Y.; Sugi, K.; Kimura, Y.; Niwano, M.; Ouchi, Y.; Seki, K., Phys. Status Solidi A 2004, 201, 1075. (b) Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K., Adv. Mater. 1999, 11, 972. (c) Lee, S. T.; Wang, Y. M.; Hou, X. Y.; Tang, C. W., Appl. Phys. Lett. 1999, 74, 670. (d) Ma, H.; Yip, H. L.; Huang, F.; Jen, A. K. Y., Adv. Funct. Mater. 2010, 20, 1371.
    17 (a) Carter, S. A.; Angelopoulos, M.; Karg, S.; Brock, P. J.; Scott, J. C., Appl. Phys. Lett. 1997, 70, 2067. (b) Kido, J.; Iizumi, Y., Appl. Phys. Lett. 1998, 73, 2721. (c) Heil, H.; Steiger, J.; Karg, S.; Gastel, M.; Ortner, H.; von Seggern, H.; Stossel, M., J. Appl. Phys. 2001, 89, 420. (d) Helander, M. G.; Wang, Z. B.; Qiu, J.; Greiner, M. T.; Puzzo, D. P.; Liu, Z. W.; Lu, Z. H., Science 2011, 332, 944.
    18 (a) Lee, J. Y., Appl. Phys. Lett. 2006, 88, 073512. (b) Chen, C. W.; Hsieh, P. Y.; Chiang, H. H.; Lin, C. L.; Wu, H. M.; Wu, C. C., Appl. Phys. Lett. 2003, 83, 5127. (c) Ganzorig, C.; Kwak, K. J.; Yagi, K.; Fujihira, M., Appl. Phys. Lett. 2001, 79, 272.
    19 Crispin, X.; Geskin, V.; Crispin, A.; Cornil, J.; Lazzaroni, R.; Salaneck, W. R.; Bredas, J. L., J. Am. Chem. Soc. 2002, 124, 8131.
    20 Hong, K.; Lee, J. W.; Yang, S. Y.; Shin, K.; Jeon, H.; Kim, S. H.; Yang, C.; Park, C. E., Org. Electron. 2008, 9, 21.
    21 (a) Chu, T. Y.; Chen, J. F.; Chen, S. Y.; Chen, C. J.; Chen, C. H., Appl. Phys. Lett. 2006, 89, 053503. (b) Lee, H.; Cho, S. W.; Han, K.;
    128
    Jeon, P. E.; Whang, C. N.; Jeong, K.; Cho, K.; Yi, Y., Appl. Phys. Lett. 2008, 93, 043308.
    22 Hong, I. H.; Lee, M. W.; Koo, Y. M.; Jeong, H.; Kim, T. S.; Song, O. K., Appl. Phys. Lett. 2005, 87, 063502.
    23 Chu, T. Y.; Kwong, C. Y.; Song, O. K., Appl. Phys. Lett. 2008, 92, 233307.
    24 Di, C. A.; Yu, G.; Liu, Y. Q.; Xu, X. J.; Song, Y. B.; Zhu, D. B., Appl. Phys. Lett. 2006, 89, 033502.
    25 Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y., Nature mater. 2004, 3, 317.
    26 de Boer, B.; Hadipour, A.; Mandoc, M. M.; van Woudenbergh, T.; Blom, P. W. M., Adv. Mater. 2005, 17, 621.
    27 Alloway, D. M.; Hofmann, M.; Smith, D. L.; Gruhn, N. E.; Graham, A. L.; Colorado, R.; Wysocki, V. H.; Lee, T. R.; Lee, P. A.; Armstrong, N. R., J. Phys. Chem. B 2003, 107, 11690.
    29 Tao, F.; Bernasek, S. L., Chem. Rev. 2007, 107, 1408.
    28 (a) Chang, S. C.; Chao, I.; Tao, Y. T., J. Am. Chem. Soc. 1994, 116, 6792. (b) Tao, Y. T.; Wu, C. C.; Eu, J. Y.; Lin, W. L., Langmuir 1997, 13, 4018.
    30 Peng, H. J.; Sun, J. X.; Zhu, X. L.; Yu, X. M.; Wong, M.; Kwok, H. S., Appl. Phys. Lett. 2006, 88, 073517.
    31 Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y. T.; Parikh, A. N.; Nuzzo, R. G., J. Am. Chem. Soc. 1991, 113, 7152.
    129
    32 http://www.riken.go.jp/engn/, c RIKEN (The Institute of Physical and Chemical Research), Japan.
    33 Vickerman, J. C.; Gilmore, I. S., (Ed.), Surface analysis: The principal techniques, John Wiley & Sons, Ltd. press, Chichester, UK, 2001.
    34 Binnig, G.; Quate, C. F.; Gerber, C., Phys. Rev. Lett. 1986, 56, 930. 35 Danilatos, G. D., Adv. Electron. Electron Phys. 1988, 71,109.
    36 (a) Bumm, L. A.; Arnold, J. J.; Dunbar, T. D., Allara, D. L.; Weiss, P. S., J. Phys. Chem. B 1999, 103, 8122. (b) Wold, D. J.; Haag, R.; Rampi, M. A.; Frisbie, C. D., J. Phys. Chem. B 2002, 106, 2813. (c) Holmlin, R.; Haag, R.; Chabinyc, M. L.; Ismagilov, R. F.; Cohen, A. E.; Terfort, A.; Rampi, M. A.; Whitesides, G. M., J. Am. Chem. Soc. 2001, 123, 5075.
    37 Chen, B. J.; Lai, W. Y.; Gao, Z. Q.; Lee, C. S.; Lee, S. T.; Gambling,W. A., Appl. Phys. Lett. 1999, 75, 4010.
    38 Graupe, M.; Takenaga, M.; Koini, T.; Colorado, R.; Lee, T. R., J. Am. Chem. Soc. 1999, 121, 3222.
    39 Peaks assignments were defined and simulated by PC-Spartan.
    40 Chen, W.; Huang, C.; Gao, X. Y.; Wang, L.; Zhen, C. G.; Qi, D. C.; Chen, S.; Zhang, H. L.; Loh, K. P.; Chen, Z. K.; Wee, A. T. S., J. Phys. Chem. B. 2006, 110, 26075.
    41 Tsao, M. W.; Hoffmann, C. L.; Rabolt, J. F.; Johnson, H. E.; Castner, D. G.; Erdelen, C.; Ringsdorf, H., Langmuir 1997, 13, 4317.
    42 Scott, R. L., J. Phys. Chem. 1958, 62, 136.
    43 Ren, Y. Z.; Iimura, K.; Ogawa, A.; Kato, T., J. Phys. Chem. B 2001,
    130
    105, 4305.
    44 (a) Kang, J. F.; Ulman, A.; Liao, S.; Jordan, R., Langmuir 1999, 15, 2095. (b) Kang, J. F.; Liao, S.; Jordan, R.; Ulman, A., J. Am. Chem. Soc. 1998, 120, 9662.
    45 (a) Shaporenko, A.; Cyganik, P.; Buck, M.; Ulman, A.; Zharnikov, A., Langmuir 2005, 21, 8204. (b) Zharnikov, M.; Grunze, M., J. Vacuum Sci. Tech. B 2002, 20, 1793.
    46 Chaudhury, M. K. Mater. Sci. Eng. 1996, R16, 97.
    47 Graupe, M.; Takenaga, M.; Koini, T.; Colorado, Jr. R.; Randall Lee, T. J. Am. Chem. Soc. 1999, 121, 3222.
    48 Fowkes, F. M.; Riddle, F. L. Jr.; Pastore, W. E.; Weber, A. A. Colloids Surf. 1990, 43, 367.
    49 The work function for n-decanethiol monolayer carrying only a terminal CF3 group increases to 5.5 eV, as compare to 5.8 eV for FDT monolayer.
    50 (a) Fugakawa, H.; Kera, S.; Kataoka, T.; Hosoumi, S.; Watanabe, Y.; Kudo, K.; Ueno, N. Adv. Mater. 2007, 19, 665. (b) Tengstedt, C.; Osikowicz, W.; Salaneck, W. R.; Parker, I. D.; Hsu, C. H.; Fahlman, M. Appl. Phys. Lett. 2006, 88, 053502. (c) Koch, N.; Vollmer, A. Appl. Phys. Lett. 2006, 89, 162107. (d) Braun, S.; Osikowicz, W.; Wang, Y.; Salaneck, W. R. Org. Electron. 2007, 8, 14.
    51 Sze, S. M., (Ed), Physics of Semiconductor Devices, John Wiley & Sons, Ltd. press, New Jersey, USA, 2007.
    52 (a) Chen, C. Y.; Chao, Y. C.; Meng, H. F.; Horng, S. F., Appl. Phys. Lett. 2008, 93, 223301. (b) Mabeck, J. T.; Malliaras, G. G. Anal.
    131
    Bioanal. Chem. 2006, 384, 343. (c) Nomoto, K.; Hirai, N.; Yoneya, N.; Kawashima, N.; Noda, M.; Wada, M.; Kasahara, J., Ieee Trans. Electron. Devices 2005, 52, 1519. (d) Renshaw, C. K.; Xu, X.; Forrest, S. R., Org. Electron. 2010, 11, 175. (d) Yamamoto, T.; Nakajima, Y.; Takei, T.; Fujisaki, Y.; Fukagawa, H.; Suzuki, M.; Motomura, G.; Sato, H.; Tokito, S.; Fujikake, H., Jpn. J. of Appl. Phys. 2011, 50, 024201.
    53 Matsushima, T.; Adachi, C., Jpn. J. Appl. Phys. 2007, 46, L861.
    54 (a) Brojdo, S.; Riley, T. J.; Wright, G. T., Brit. J. Appl. Phys. 1965, 16, 133. (b) Zuleeg, R., Solid-State Electron. 1967, 10, 449.
    55 (a) Fujimoto, S. Y.; Nakayama, K. I.; Yokoyama, M., Appl. Phys. Lett. 2005, 87, 133503. (b) Nakayama, K. I.; Fujimoto, S. Y.; Yokoyama, M., Appl. Phys. Lett. 2006, 88, 153512. (c) Yi, M.; Huang, J.; Ma, D.; Hummelgen, I. A., Org. Electron. 2008, 9, 539. (d) Ou, T. M.; Cheng, S. S.; Huang, C. Y.; Wu, M. C.; Chan, I. M.; Lin, S. Y.; Chan, Y. J., Appl. Phys. Lett. 2006, 89, 183508. (e) Chao, Y. C.; Xie, M. H.; Dai, M. Z.; Meng, H. F.; Horng, S. F.; Hsu, C. S., Appl. Phys. Lett. 2008, 92, 093310.
    56 (a) Chao, Y. C.; Ku, M. C.; Tsai, W. W.; Zan, H. W.; Meng, H. F.; Tsai, H. K.; Horng, S. F., Appl. Phys. Lett. 2010, 97, 223307. (b) Chao, Y. C.; Meng, H. F.; Horng, S. F., Appl. Phys. Lett. 2006, 88, 223510. (c) Fujimoto, K.; Hiroi, T.; Kudo, K.; Nakamura, M., Adv. Mater. 2007, 19, 525.
    57 Davids, P. S.; Campbell, I. H.; Smith, D. L., J Appl. Phys. 1997, 82, 6319.
    132
    58 (a) Leising, G.; Stadlober, B.; Haas, U.; Haase, A.; Palfinger, C.; Gold, H.; Jakopic, G., Microelectron. Eng. 2006, 83, 831. (b) Palfinger, U.; Auner, C.; Gold, H.; Haase, A.; Kraxner, J.; Haber, T.; Sezen, M.; Grogger, W.; Domann, G.; Jakopic, G.; Krenn, J. R.; Stadlober, B., Adv. Mater. 2010, 22, 5115. (c) Pina-Hernandez, C.; Guo, L. J.; Fu, P. F., Acs Nano 2010, 4, 4776.
    59 Donthu, S.; Pan, Z. X.; Myers, B.; Shekhawat, G.; Wu, N. G.; Dravid, V., Nano Lett. 2005, 5, 1710.
    60 Khanh, N. N.; Yoon, K. B., J. Am. Chem. Soc. 2009, 131, 14228. (b) Kim, D. S.; Ji, R.; Fan, H. J.; Bertram, F.; Scholz, R.; Dadgar, A.; Nielsch, K.; Krost, A.; Christen, J.; Gosele, U.; Zacharias, M., Small 2007, 3, 76. (c) Miklyaev, Y. V.; Meisel, D. C.; Blanco, A.; von Freymann, G.; Busch, K.; Koch, W.; Enkrich, C.; Deubel, M.; Wegener, M., Appl. Phys. Lett. 2003, 82, 1284.
    61 (a) Blattler, T. M.; Binkert, A.; Zimmermann, M.; Textor, M.; Voros, J.; Reimhult, E., Nanotechnology 2008, 19, 075301. (b) Pan, F.; Zhang, J. Y.; Cai, C.; Wang, T. M., Langmuir 2006, 22, 7101.
    62 Kuo, C. W.; Shiu, J. Y.; Cho, Y. H.; Chen, P., Adv. Mater. 2003, 15, 1065.
    63 Ho, C. C.; Chen, P. Y.; Lin, K. H.; Juan, W. T.; Lee, W. L., Acs Appl. Mater. Interfaces 2011, 3, 204.
    64 Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., Nature

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE