簡易檢索 / 詳目顯示

研究生: 劉冠廷
Kuan-Ting Liu
論文名稱: 鎳鈦與鎳鈦鋁薄膜之微結構特性、結晶動力學、機械性質和腐蝕行為
Crystallization Kinetics, Mechanical Properties, Corrosion Behaviors and Microstructure Characterization of NiTi and NiTiAl Films
指導教授: 杜正恭
Jenq-Gong Duh
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 173
中文關鍵詞: 鎳鈦鎳鈦鋁薄膜結晶動力學機械性質腐蝕行為
外文關鍵詞: NiTi, NiTiAl, Thin Film, Crystallization Kinetics, Mechanical Properties, Corrosion Behavior
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎳鈦合金系統具有形狀記憶效果及超彈性特殊性質,因而在半導體業及生醫界常廣泛地應用。經適當處理後,鎳鈦合金會因鎳鈦化合物的析出而具有形狀記憶效果及超彈性。然而,過低的熱處理溫度會不夠使非晶態的鎳鈦系統析出化合物而無法產生形狀記憶效果,反之過高的熱處理溫度會使晶粒成長過大而導致機械性質下降,進一步使形狀記憶效果及超彈性變差。另外在液體環境中金屬是否會溶解,也是重要的議題,因此追求更佳之抗腐蝕效果也是重要課題。因之,合宜的熱處理溫度及提升抗腐蝕能力將是關鍵性技術發展。本研究利用第三元素添加使二元鎳鈦成為三元鎳鈦基薄膜,藉此探討其對結晶動力學、機械性質、腐蝕行為及微結構特性之影響。
    利用磁控濺鍍技術,成功地鍍製出二元鎳鈦及三元鎳鈦鋁薄膜。經熱分析的結果指出,結晶溫度隨著鋁的添加而下降。利用Kissinger 方法針對Ni50.5Ti49.5 and Ni45.6Ti49.2Al5.1二者結晶的活化能計算分別為411±15及 374±15 kJ/mol。此外運用等溫方法得知,結晶的活化能會隨著結晶的程度提高而下降。經由不同溫度熱處理,二元鎳鈦會析出B2-NiTi及Ni3Ti化合物,相對地三元系統鎳鈦鋁只有析出B2-NiTi化合物,並未發現其他含鋁的化合物。在更高的熱處理條件下,二元析出的晶粒較大於三元系統者。在機械性質表現上,最高硬度可由二元鎳鈦薄膜8.9±0.5GPa,提高到三元鎳鈦鋁13.0 ± 0.7 GPa。此係由於在NiTi析出的基地受鋁添加而形成的固溶強化效果。此外,針對鎳鈦及鎳鈦鋁薄膜,利用奈米壓痕技術配合自製加溫方法評估其形狀記憶效果與超彈性行為。發現不同程度的熱處理條件下,二元系統鎳鈦的彈性回復率會隨著測量溫度上升而下降,但經由鋁添加的三元系統其彈性回復率卻是上升,最大值可逹0.532。證明其超彈性行為可藉由第三元的添加來改善。
    經由腐蝕的量測分析,鋁元素的添加可有效抑制其腐蝕行為。藉由不同熱處理條件下觀察出晶粒細化亦能提高抗腐蝕行為。原因在於合金表面會生成一層鈍化膜可保護合金表面避免進一步的溶解,運用晶粒細化方式產生更多鈍化的機率,迅速地形成一層緻密的保護層;由元素鍵結得知二元鎳鈦合金表面主要生成物為TiO2,三元鎳鈦鋁合金表面生成物為TiO2及Al2O3。另外利用Mott-Schottky方式計算頓化層在液體反應下的缺陷密度、鈍化厚度及缺陷的擴散係數。二元及三元系統所形成的鈍化層在不同鈍化電位的條件下,其擴散係數在10-16-10-17cm2/s的範圍之間。在三元鎳鈦鋁表面鈍化層的微結構分析中,形成富TiO2的區域為非晶態,而形成富Al2O3區域則為結晶態,鈍化層是由帶有能障的絕緣體氧化物組成,但其結構為非晶態時,其能障會降低,提高了其電子穿隧機率。因此利用鋁的添加形成Al2O3,擴大其結晶區域,藉以降低電子穿隧機率,提高其抗腐蝕特性。


    Table List-------------------------------------------------------------------------------------------------------------------------------------III Figure Caption---------------------------------------------------------------------------------------------------------------------------IV Abstract--------- ------------------------------------------------------------------------------------------------------------------------------IX Chapter I Introduction-----------------------------------------------------------------------------------------------------------------1 1.1 Background----------------------------------------------------------------------------------------------------------------------1 1.2 Material Selection----------------------------------------------------------------------------------------------------- -----2 1.3 The Importance of NiTi-based System-----------------------------------------------------------------------2 1.4 Critical Issues------------------------------------------------------------------------------------------------------------------3 1.5 Motivations and Goals---------------------------------------------------------------------------------------------------4 Chapter II Literature Review-----------------------------------------------------------------------------------------------------9 2.1 Shape Memory Effect and Superelasticity----------------------------------------------------------------9 2.2 History of Shape Memory Alloy and NiTi Material System-------------------------------11 2.3 Properties Evaluations--------------------------------------------------------------------------------------- ---------13 2.3.1 Thermal analysis of amorphous NiTi alloy---------------------------------------------------13 2.3.2 Nanoindentation Method----------------------------------------------------------------------------------15 2.3.2.1 Hardness and Young’s Modulus----------------------------------------------- ---- -- 15 2.3.3.2 Determination of Shape Memory Effect and Superelasticity-----17 2.3.3 Evaluation of Corrosion Resistance --------------------------------------------------------------18 2.3.3.1 Grain Size Effect---------------------------------------------------------------------------------18 2.3.3.2 Pitting Corrosion---------------------------------------------------------------------------------19 2.3.3.3 Semiconductor and electronic properties of passivity-----------------24 Chapter III Experimental Procedures------------------------------------------------------------------------------------42 3.1 Magnetron Sputtering------------------------------------------------------------------------------------------------- 42 3.2 Heat Treatment-------------------------------------------------------------------------------------------------------------42 3.3 Measurements and Analysis------------------------------------------------------------------------ --------------43 3.3.1 Thermal analysis------------------------------------------------------------------------------------------------43 3.3.2 Microstructure ---------------------------------------------------------------------------------------------------44 3.3.3 Composition analysis--------------------------------------------------------------------------------- ------44 3.3.4 Phase Identification------------------------------------------------------------------------------- -----------45 3.3.5 Mechanical evaluation-------------------------------------------------------------------------- -----------45 3.3.6 Corrosion and pitting tests----------------------------------------------------------------------------------45 3.3.7 passivation structure and semiconductor properties--------------------------------------46 Chapter IV Results and Discussion 4.1 Kinetics mechanism of NiTi and NiTiAl crystallization------------------------------------49 4.2 Microstructure and phase evolution on thin film of NiTi and NiTiAl with different annealing conditions---------------------------------------------------------------------------------59 4.3 Mechanical characterization of NiTi and NiTiAl thin films with different annealing conditions--------------------------------------------------------------------------------------------------63 4.4 Grain size effects and pitting corrosion behavior of NiTi and NiTiAl thin films-------------------------------------------------------------------------------------------------------------------------69 4.5 Semiconductor properties and electronic structure of passivation film on NiTi and NiTiAl surface------------------------------------------------------------------------------------------------76 Chapter V Conclusions-----------------------------------------------------------------------------------------------------------159 References---------------------------------------------------------------------------------------------------------------------------------162

    1. K. Otsuka and X. Ren, Pross. Mater. Sci., 50 (2005), 511.
    2. J. V. Humbeeck, Mater. Sci. Eng. A, 273 (1999), 134.
    3. T. Honma and H. Funakubo, editor. Shape memory alloys. New York: Gordon and Breach Science Publishers; 1987. p. 61.
    4. Y. Fu, H. Du, W. Huang, S. Zhang, M. Hu, Sens. Actua. A, 112 (2004), 395.
    5. G. Song, N. Ma, H. N. Li, Engin. Struct., 28 (2006), 1266.
    6. J.Z. Chen and S.K. Wu, J. Non-Crystall. Solids, 288 (2001), 159.
    7. A. Morone, Appl. Surf. Sci., 253 (2007), 8242
    8. F.J. Gil, E. Solano, and J. Pena, J. Mater. Sci-Mater. Med., 15 (2004), 1181.
    9. A. Danilov, A. Kapanen, and S. Kujala, J. De Phys. IV, 112 (2003), 1117.
    10. T. Kotil, H. Sehitoglu, and H. Maier, Mater. Sci. Eng. A, 359 (2003), 280.
    11. T. Kurita, H. Matsumoto, K. Sakamoto, K. Tanji, and H. Abe, J. Alloys and Compo., 396 (2005), 193.
    12. N. Ishii and H. Matsumoto, J. Mater. Sci. Letts., 18 (1999), 1853.
    13. Y. Koizumi, Y. Ro, S. Nakazawa, and H. Harada, Mater. Sci. Eng. A, 223 (1997), 36.
    14. H. Matsumoto, H. Abe, and Y. Morikawa, Physica B, 322 (2002), 24.
    15. J.C. Schuster, Z Pan, and S.H. Liu, Intermetallics, 15 (2007), 1257.
    16. F. Dalle, E. Perrin, P. Vermaut, M. Masse, R. Portier, Acta Mater., 50 (2002), 3557.
    17. B. Kockar, I. Karaman, and J. Kim, Scrip. Mater., 54 (2006), 2203.
    18. S. Sanjabi, Y.Z. Cao, S. K Sadrnezhaad, and Z. H. Batder, J. Vac. Sci. Tech A, 23 (2005), 1425.
    19. H. Matsumoto, J. Alloys and Compo., 366 (2004), 182.
    20. H.C. Wu and Q.C. Tian, Intermetallics, 11 (2003), 773.
    21. E. Quandt, C. Halene, and H. Holleck, Senors Actuat. A, 53 (1996), 434.
    22. C. W. Gong, Y. N. Wang, and D. Z. Yang, J. Alloys and Compo., 419 (2006), 61.
    23. K.H. Wu, J. L. Ma, and Z. Pu, Shape Mem. Mater., 327 (2000), 155.
    24. Y. Li, S.B. Wei, X. Q. Cheng, T. Zhang, and G. A. Cheng, Surf. Coat. Tech., 202 (2008), 3017.
    25. H.C. Man, K.L. Ho, and Z.D. Cui, Surfac. Coat. Tech., 200 (2006), 4612.
    26. H. C. Lin, K. M. Lin, and C. S. Lin, J. Alloys and Compo., 284 (1999), 213.
    27. S.L. Chena, S.F. Hsieh , H.C. Lin, Mater. Sci. Eng., A 445 (2007),486.
    28. T. Otshka and C. M. Wayman editor. Shape memory materials. New York: Cambridge University Press; 1998. p. 88.
    29. D.R. Uhlmann, J. Noncry. Solids., 7 (1972), 337.
    30. M.T. Clavaguera, S. Surinach, Thermoch. Acta, 203 (1992), 379.
    31. J. Malek, Thermoch, Acta, 355 (2000), 239.
    32. D. He, J. Y. Wang, and E.J. Mitteemeijer, Scripta Mater., 54 (2006), 559.
    33. S.K. Tien, F. B. Wu, and J. G. Duh, Key Engin. Mater., 313 (2006), 83.
    34. C. L. Lo and J. G. Duh, J. Mater. Sci., 38 (2003), 693.
    35. G. R. Purdy and J. G. Parr, Trans. Metall. Soc. AIME, 221 (1961), 636.
    36. R. J. Wasilewski, S.R. Butler, J. E. Hanlon, and D. Worden, Metall. Trans., 2 (1971), 229.
    37. G. F. Bastin and G. D. Rieck, Metall. Trans., 5 (1974), 1817.
    38. L. Wang, Y. Lin, Z. Zeng, W. Liu, Q. Xue, L. Hu, and J. Zhang, Electro. Acta, 52 (2007), 4342.
    39. S. Ningshen, U.K. Mudail, V.K. Mittal, and H.S. Khatak, Corros. Sci., 49 (2007), 481.
    40. C. O. A. Olsson and D. Landolt, Electrochim. Acta, 48 (2003), 1093.
    41. H. H. Ge, G. D. Zhou, and W. Q. Wu, Appli. Surf. Sci., 211 (2003), 321.
    42. J. W. Schultze and M. M. Lohrengel, Electrochim. Acta, 45 (2000), 2499.
    43. J. S. Kim, E. A. Cho, and H. S. Kwon, Corr. Sci., 43 (2001), 1403.
    44. Y. M. Zeng and J. L. Lou, Electrochim. Acta, 48 (2003), 3551.
    45. H. Funakubo editors, “Shape Memory Alloys”, Gordon and Breach Science Pub., Japan, 1984 p. 1-60.
    46. Delaey L Cahn RW et al., editors. “Difusionless transformations, material science and technology”, vol. 5, Weinheim, Germany: VCH, 1991. p. 339.
    47. M. Ahlers, Prog. Mater. Sci., 30 (1986), 135.
    48. F.C. Lovey and V. Torra, Pross. Mater. Sci., 44 (1999), 189.
    49. S. Saadat, J. Salichs, M. Noori1, Z. Hou, H. Davoodi, I Bar-on,
    Y. Suzuki and A. Masuda, Smart Mater. Struct. 11 (2002) 218–229
    50. C.M. Wayman, MRS Bull, 18(1993), 49.
    51. R. Stalmans , J. V. Humbeeck , L. Delaey, Acta Metall. Mater.,40 (1992), 2921.
    52. K. Otsuka and C.M. Wayman, “Shape Memory Materials”, Cambridge University Press, United Kingdom, p.40, 1998.
    53. K. Otsuka, Jpn. J. Appl. Phys., 10 (1971),571.
    54. K. Otsuka and K. Shimizu, Scr. Metall., 11 (1977),757.
    55. J.E. Gary, T.U. Anselmi, and Z.A. Munir, Acta Mater., 51 (2003), 4487.
    56. C. Colinet, and D.N. Manh, Phys. Rev. B.,52 (1995), 15176.
    57. G. F. bastin and G.. D. Rieck, Metall. Trans., 5 (1974), 1817.
    58. B. Winzek, S. Schmitz, and H. Rumpf, Mater. Sci Eng. A, 378 (2004), 40.
    59. J. Sestak, Thermochimica Acta, 110 (1987), 113.
    60. H. Tanaka, Thermochimica Acta, 267 (1995), 29.
    61. M. Avrami, J. Chem. Phys. 7 (1939) 1103.
    62. M. Avrami, J. Chem. Phys. 8 (1940) 212.
    63. M. Avrami, J. Chem. Phys. 9 (1941) 177.
    64. D.W. Henderson, J. Non-Cryst. Solids 30 (1979) 301.
    65. M.P. Shepilov, D.S. Baik, J. Non-Cryst. Solids 171 (1994) 141.
    66. D.W. Henderson, J. Therm. Anal. 15 (1979) 325.
    67. J.R. Maccajlum and J. Tanner, Nature (London), 255 (1970) 1127.
    68. J. Norwisz, Thermochim. Acta, 25 (1978) 123.
    69. A. Dutta and M.E. Ryan, Thermochim. Acta, 33 (1979) 87.
    70. T. Ozawa, Bull. Chem. Soc. Jpn. 57 (1984) 639.
    71. H.E. Kissinger, Anal. Chem., 29 (1957), 1103.
    72. J. A. Augis and J. E. Bennett, J. Therm. Anal., 13 (1978), 283.
    73. M. C. Weinberg, Thermochi. Acta, 280-281 (1996), 63.
    74. L. Zhang, C. Xie, and J. Wu, Scripta Mater, 55 (2006), 609.
    75. X. Wang and J. J. Vlassak, Scripta Mater, 54 (2006), 925.
    76. S. Besseghini, E. Villa, and A. Tuissi, Mater. Sci. Eng. A, 273-275, (1999), 390.
    77. J. Z. Chen and S. K. Wu, Thin Solid Films, 339 (1999), 194.
    78. K.H. Buschow, J. Phys F: Met. Phys., 13 (1983) 563.
    79. C. Seeger, P.L. Ryder, Mater. Sci. Eng. A179/A180 (1994) 641.
    80. W. C. Oliver, J. Mater. Res., 16 (2001), 3202.
    81. C.M. Cheng and Y.T. Cheng, Appl. Phys. Lett., 71 (1997), 2623.
    82. M.K. Small and W. D. Nix, J. Mater. Res., 7 (1992), 1553.
    83. S. Moyne, C. Poilane, and K. Kitamura, Mater. Sci. Eng. A, 273 (1999), 727.
    84. K. Gall, K. Juntunen, and H.J. Maier, Acta Mater., 49 (2001), 3205.
    85. X.Q. Feng, L .M. Qian, W.N. Yan, and Q. P. Sun, Appl. Phys. Lett., 92 (2008), 12909.
    86. K. Komvopoulos and X. G. Ma. Appl. Phys. Lett., 87 (2005), 263108.
    87. F. X. Gil, J.M. Manero, and J.A. Planell, J. Mater. Sci. Med., 6 (1996), 255.
    88. K. N. Melton and O. Mercier, Acta Metall., 27 (1979), 137.
    89. K. Gall, H. Sehitoglu, and Y. I . Chumlyakov, Scrip. Mater., 40 (1999), 7.

    90. A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, and V. V. Stolyarov, Scri. Mater., 51 (2004), 225.
    91. K. S. Kh, C. C. Koch, and P.S. Fedkiw, Corr. Sci, 46 (2004), 51
    92. L. Wang, Y. Lin, Z. Zeng, W. Liu, Q. Xue, L. Hu, and J. Zhang, Electro. Acta, 52 (2007), 4342
    93. X. Peng, Y. Zhang, J. Zhao and F. Wang, Electro. Acta, 51 (2006), 4922.
    94. R. Mishra and R. Balasubramaniam, Corros. Sci., 46 (2004), 3019
    95. A. Aledresse and A. Alfantazi, J. Mater. Sci. 39 (2004), 1523.
    96. G. Lu and G. Zangari, Electro. Acta, 47 (2002), 2969.
    97. S.H. Kim, K.T. Aust, U. Erb, F. Gonzalez and G. Palumbo, Scrip. Mater., 48 (2003), 1379.
    98. A. Barbucci, F. Farne, P. Matteazzi, R. Riccieri and G. Cerisola, Corros. Sci., 41 (1999), 463.
    99. S.H. Kim, U. Erb, K.T. Aust, F. Gonzalez, and G. Palumbo, Plat. Surf. Finish., 91 (4) (2004), 68.
    100. L. P. Wang, J. Y. Zhang Y. Gao, Q. J. Xue, L. T. Hu, and T. Xu, Script. Mater., 55 (2006), 657.
    101. S. S. Smialowska, Pitting Corrosion of Metals, NACE International, Houston, Tex., 1986.
    102. H. Bohni in Corrosion Mechanisms, Marcel Dekker, New York, 1987, p285.
    103. G. S. Frankel, J. Electrochem. Soc., 145 (1998), 2186.
    104. H. H. Strehblow, B. Titze, Corros. Sci., 17 (1977), 461.
    105. P. Schmuki, J. Fraser, and C.M. Vitus, J. Electrochem. Soc., 143 (1996), 3316.
    106. J. R. Galvele, Corros. Sci., 21 (1981), 551.
    107. C.Y. Chao, L. F. Lin, and D.D. Macdonald, J. Electrochem. Soc., 128 (1981), 1187.
    108. C.Y. Chao, L. F. Lin, and D.D. Macdonald, J. Electrochem. Soc., 128 (1981), 1194.
    109. D.D. Macdonald, J. Electrochem. Soc., 139 (1992), 3434.
    110. L. Zhang and D.D. Macdonald, Electroch. Acta, 43 (1998), 679.
    111. B.T. Lu, J. L. Luo, and Y.C. Lu, J. Electrochem. Soc., 154 (2007), C379.
    112. M. Femenia, J. Pan, and C. Leygraf, J. Electrochem. Soc., 149 (2002), B187.
    113. H. H. Uhlig, J. Electrochem. Soc., 97 (1950), 215.
    114. H.H. Strehblow, Werkst. Korros., 27 (1976), 792.
    115. M. Stratmann and G.S. Frankel ed., “Corrosion and Oxide Films“, Weinheim, Wiley-VCH 2003.

    116. P. Schmuki, J. Solid State Electrochem., 6 (2002), 145.
    117. Z. S. Smialowska, Corros. Sci., 44 (2002), 1143.
    118. J. W. Schultze and M.M. Lohrengel, Electro. Acta, 45 (2000), 2499.
    119. J. W. Schultze and L.Elfenthal, J. Electroanal. Chem., 204 (1986), 153.
    120. U. Stimming, Electrochem. Acta., 31 (1986), 415.
    121. P. Schmuki and H. Boehni, J. Electrochem. Soc., 139 (1992), 1908.
    122. P. Schmuki and H. Boehni, J. Electrochem. Soc., 141 (1994), 362.
    123. D. Paola, Electroch. Acta, 34 (1989), 203.
    124. E. Mccafferty, J. Electrochem. Soc., 146 (1999), 2863.
    125. E. Mccafferty, Corr. Sci., 45 (2003), 1421.
    126. E. Mccafferty, Corr. Sci., 45 (2003), 301.
    127. M. M. Hukovic, S. Omanovic, and A. Jukic, Electro. Acta, 45 (1999), 977.
    128. G. Goodlet, S. Faty, S. Cardoso, P.P. Freitas, and A.M. P. Simoes, Corros. Sci, 46 (2004), 1479.
    129. J. Sikora, E. Sikora, and D.D. Macdonald, Electro. Acta, 45 (2000), 1875.
    130. Y. M. Zeng and J. L. Luo, Electro. Acta 48 (2003), 3551.
    131. M. Pontinha, S. Faty, M.G. Walls, and M.G.S. Ferreira, Corro. Sci., 48 (2006), 2971.
    132. I. D. Perez, F. Sanz, and P. Gorostiza, Electrochem. Communi., 8 (2006), 1595.
    133. K. Azumi, K. Araki, M. Seo, J. Electroanal. Chem. 427 (1997) 15.
    134. A. W. Hassel and D. Diesing, Thin Solid Films, 414 (2002), 296.
    135. J.M. Albella, I. Montero, and J.M. Martinez-Duart, Mater. Sci. Forum 185–188 (1995) 527.
    136. R. Krishnakumar and Z.S. Smialowska, 1992 Oxide films on metal and alloys. Proceedings, v 92-22. The electrochemical society, NJ, p 370
    137. P. Schmuki, PhD thesis (1992), Swiss Federal Institute of Technology, Zurich.
    138. S. R. Morrison, (1980) “Electrochemistey at semiconductor and oxidized metal electrodes”. Plenum, New York.
    139. U. Stimming and J.W. Schultze, Electroch. Acta, 24 (1979), 859.
    140. E. Angeline and M. Maya, Chim Ind., 59 (1977), 420.
    141. S. M. Wilhelm and N. Hackerman, J. Electrochem. Soc., 128 (1981), 1358.
    142. M.F. Toney, A.J. Davenport, L. J. Oblonsky, M.P. Ryan and C.M. Vitus, Phys. Rev. Lett., 79 (1997), 4282.
    143. J. W. Schultze and M.M. Lohrengel, Electroch. Acta, 45 (2000), 2499.
    144. J.I. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis, 2nd Ed., Plenum Press, New York, 1992.
    145. J. Burke, The Kinetics of Phase Transformations in Metals, Pergamon, Oxford Press, 1965.
    146. J. W. Christian, The Theory of Transformation in Metals and Alloys, Pergamon Press, New York, 1975.
    147. P. Nash, “Phase Diagram of Binary Nickel Alloys”, Material Park, ASM International, 1991.
    148. B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction”, Prentice Hall, USA, 2001. 3rd Edition.
    149. A. J. M. Wood, S. Sanjabi, and Y. Q. Fu, Surf. Coat. Tech., 202 (2008), 3115.
    150. X.G. Ma and K. Komvopoulus, App. Phys. Lett., 84 (2004), 4274.
    151. R. Liu, D. Y. Li, Y. S. Xie, R. Llewellyn, and H. M. Hawthorne, Script. Mater., 41 (1999), 691.
    152. W. Ni, Y. T. Cheng, and D. S. Grummon, App. Phys. Lett., 82 (2003), 2811.
    153. D.R. Angst, J. Phys. IV, C8 (1995), 747.
    154. W. Ni and Y. T. Cheng, App. Phys. Lett., 80 (2002), 3310.

    155. P.T. Tang, T. Watanabe, J.E.T. Andersen, and G. Bech- Nielsen, J. Appl. Electrochem., 25 (1995), 347.
    156. B. Yu, P. Woo and U. Erb, Script. Mater., 56 (2007), 353.
    157. R. Rofagha, S.J. Splinter, U. Erb, N.S. McInytre, Nanostruct. Mater. 4 (1994) 69.
    158. S. L. D. Assis, S. Wolynec, and I. Costa, Electro. Acta, 51 (2006), 1815.
    159. R. M. Souto, M. M. Laz, and R. L. Reis, Biomater., 24 (2003), 4213.
    160. J. Troe and R.T. Watson, J. Phys. Chem. Ref. Data 11 (1982), 323.
    161. M. Ask, J. Lausmaa, and B. Kasemo, Appl. Sur. Sci. 35, (1988-89), 283.
    162. N. W. Kearns and J. E. Restall, Corros. Sci. 36 (1994), 631.
    163. H.S. Kim and M. B. Bush, Nanostr. Mater., 11 (1999), 361.
    164. B. Basak and A. K. Sengupta, Scrip. Mater., 51 (2004), 225.
    165. K.M.S. Youssef, C.C. Koch, and P.S. Fedkiw, Corros. Sci., 46 (2004), 51.
    166. S. Ningshen, U.K. Mudail, V.K. Mittal and H.S. Khatak, Corros. Sci., 49 (2007), 481.
    167. C. O. A. Olsson and D. Landolt, Electrochim. Acta, 48 (2003), 1093.
    168. H. H. Ge, G. D. Zhou, and W. Q. Wu, Appli. Surf. Sci., 211 (2003), 321.
    169. E.M.M. Sutter, B. Millet, C. Fiaud, and D. Lincot, J. Electroanalytic Chem., 386 (1995), 101.
    170. P. Schmuki, J. Solid state electchem. 6 (2002), 145.
    171. Y. M. Zeng and J. L. Lou, Electrochim. Acta, 48 (2003), 3551.
    172. N. Sato, Corros. Sci., 42 (2000), 1957.
    173. W. Schottky, Z. Phys. Chem., 113 (1939), 367.
    174. N.F. Mott, Proc. Roy. Soc. Londer Ser., A 171 (1939), 27.
    175. J. Marsh and D. Gorse, Electrochim. Acta, 43 (1998), 659.
    176. T. Ohtsuka and T. Otsuki, Corros. Sci., 40 (1998), 951.
    177. N. Ibria and J.C. Mirza Rosca, J. Electroanalytic Chem., 525 (2002), 53.
    178. M. Tomkiewicz, J. Electrochem. Soc., 126 (1979), 1505.
    179. U. Stimming and J.W. Schultze, Ber. Bunsenges Phys. Chem. 80 (1976) 1297.
    180. H. Tsuchiya, J. M. Macak, A. Ghicov, A. S. Rader, L. Taveira, and P. Schmuki, Corros. Sci., 49 (2007), 203.
    181. H. S. Jarrett, Phy. Rev. Lett., 54 (1985), 217.
    182. E. Sikora, J. Sikora, D.D. MacDonald, Electrochim., Electrochim. Acta, 41 (1996), 783.
    183. D.D. Macdonald and M. U. Macdonald, J. Electrochem. Soc., 137 (1990), 2395.
    184. G. Vazquez and I. Gonzalez, Electrochim. Acta, 52 (2007), 6771.
    185. Y. F. Cheng, C. Yang, and J.L. Luo, Thin Solid Films, 416 (2002), 169.
    186. X. P. Guo, Y. Tomoe, H. Imaizumi, and K. Katoh, J. Electroanalytic Chem., 445 (1998), 95.
    187. S.J. Ahn and H.S. Kwon, J. Electroanalytic Chem., 579 (2005), 311.
    188. J. Troe and R.T. Watson, J. Phys. Chem. Ref. Data 11 (1982), 323.
    189. K. Ghosh and H. P. Maruska, J. Electrocchem. Soc, 124 (1977), 1516.
    190. M. W. Peterson and B. A. Parkinson, J. Electrochem. Soc., 133 (1986), 2538.
    191. M. H. Dean and U. Stimming, J. Electroanalytic Chem., 228 (1986), 135.
    192. D. Tromans, J. Electrocchem. Soc, 152 (2005), B460.
    193. I. Bharin and G. Platzki, Thermochemical Data of Pure Substances, 3rd d., Vol. I and II, VCH Publishers, Inc, New York (1995), P.48, P.1692.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE