簡易檢索 / 詳目顯示

研究生: 李國安
論文名稱: 銅銦硒奈米粒子用於鋰離子電池負極上的研究
The Study of CuInSe2 Nanoparticle as a Lithium-ion Battery Anode Material
指導教授: 段興宇
口試委員: 湯學成
曾院介
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 50
中文關鍵詞: lithium ion batteryanode materialnanoparticles
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究使用三元銅銦硒奈米粒子作為鋰離子電池負極材料。利用heating-up的方法合成出大量的銅銦硒奈米粒子。透過X射線繞射儀、穿透式電子顯微鏡、元素分析儀做材料分析鑑定。最後藉由電化學儀器進行測試。在室溫下,以電流密度0.1C、電壓視窗在0.01V和2.5V之間的情況下對鋰離子電池充放電,銅銦硒奈米粒子平均電容約在580mAh/g左右,與一般市售電池的負極材料石墨相比高出接近兩倍。除此之外電池經過20次充放電後,其電池穩定性也相當優異。同時也透過循環伏安法、X射線繞射儀等量測,推測當電池充放電時候,內部進行的反應機制。由於銅銦硒奈米粒子擁有高比電容量、循環壽命長、快速充電下結構保持穩定等優點,在未來的鋰離子電池發展中,銅銦硒奈米粒子具有相當大的發展潛力。


    In this study, we use CuInSe2 nanocrystals as an anode material for lithium ion batteries. Gram-scale uniform CuInSe2 nanoparticles without any size selection were synthesized by the heating-up method. As- obtained nanoparticles were characterized by tools including through X-ray differaction (XRD), LR/HR-TEM, and EDS. At ambient temperature, discharge-charge cycling was performed in the voltage window of 0.01V-2.5V (vs. Li metal) at a current density of 100µA/cm2 which corresponds to about the 0.1C rate, showing a reversible capacity of about 600 mAh/g. The excellent electrochemical capacity and stable life performance of CuInSe2 nanoparticles were demonstrated. Based on the analysis of cyclic voltammetry (CV) and ex-situ XRD, reaction mechanism of CuInSe2 nanoparticles with lithium was proposed. CuInSe2 nanoparticles have advantages of faire stable capacity, long batteries cycle life and good performance in high rate test, making it potential anode materials for future lithium ion batteries.

    摘要 I 英文摘要 II 誌謝 III 目錄圖目錄 IV 圖目錄 VI 緒論 1 1-1. 前言 1 1-2. 研究動機與目的 2 第二章 文獻回顧 3 2-1. 鋰離子電池 3 2-1-1. 鋰離子電池發展與特性 3 2-1-2. 鋰離子電池性能參數 5 2-1-3. 鋰離子電池工作原理 6 2-1-4. 鋰離子電池負極材料 7 2-1-5. 多元成分材料應用於鋰離子電池 17 第三章 實驗步驟與研究方法 21 3-1.實驗流程 21 3-2. 材料合成 22 3-3. 材料分析與鑑定 23 3-4. 鋰離子電池組裝 24 第四章 結果與討論 27 4-1. 銅銦硒奈米粒子合成 27 4-2. 循環曲線圖分析(Cycling Performance Study) 30 4-3. 等電流循環曲線圖(Galvanostatic Cycle Study) 34 4-4. 循環伏安法分析(Cyclic Voltammetry Study) 37 4-5. ex-situ X射線繞射分析(ex-situ XRD Study) 40 4-6. 交流阻抗法分析(Electrochemical Impedance spectroscopy) 42 4-7. 反應機制 44 第五章結論 45 第六章未來工作 46 第七章參考文獻 47

    1. Schalkwijk, W.; Scrosati, B., Advances in Lithium Ion Batteries IntroductionAdvances in Lithium-Ion Batteries. Schalkwijk, W.; Scrosati, B., Eds. Springer US: 2002; pp 1-5.
    2. Marchioni, F.; Star, K.; Menke, E.; Buffeteau, T.; Servant, L.; Dunn, B.; Wudl, F., Protection of Lithium Metal Surfaces Using Chlorosilanes. Langmuir 2007, 23 (23), 11597-11602.
    3. Patil, A.; Patil, V.; Shin, D. W.; Choi, J. W.; Paik, D. S.; Yoon, S. J., Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 2008, 43 (8-9), 1913-1942.
    4. Boyle, T. J.; Ingersoll, D.; Alam, T. M.; Tafoya, C. J.; Rodriguez, M. A.; Vanheusden, K.; Doughty, D. H., Rechargeable Lithium Battery Cathodes. Nonaqueous Synthesis, Characterization, and Electrochemical Properties of LiCoO2. Chemistry of Materials 1998, 10 (8), 2270-2276.
    5. Kalaiselvi, N.; Raajaraajan, A.; Sivagaminathan, B.; Renganathan, N.; Muniyandi, N.; Ragavan, M., Synthesis of optimized LiNiO<sub>2</sub> for lithium ion batteries. Ionics 2003, 9 (5), 382-387.
    6. Kim, D. K.; Muralidharan, P.; Lee, H.-W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui, Y., Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes. Nano Lett. 2008, 8 (11), 3948-3952.
    7. Guyomard, D.; Tarascon, J.-M., Rocking-chair or lithium-ion rechargeable lithium batteries. Adv. Mater. 1994, 6 (5), 408-412.
    8. Manthiram, A., Materials Challenges and Opportunities of Lithium Ion Batteries. The Journal of Physical Chemistry Letters 2011, 2 (3), 176-184.
    9. Kar, T.; Pattanayak, J.; Scheiner, S., Insertion of Lithium Ions into Carbon Nanotubes:  An ab Initio Study. The Journal of Physical Chemistry A 2001, 105 (45), 10397-10403.
    10. Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.-s.; Kudo, T.; Honma, I., Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Lett. 2008, 8 (8), 2277-2282.
    11. Paek, S.-M.; Yoo, E.; Honma, I., Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Lett. 2008, 9 (1), 72-75.
    12. Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J., Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39 (8), 3115-3141.
    13. (a) Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat Nano 2008, 3 (1), 31-35; (b) Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube Battery Anodes. Nano Lett. 2009, 9 (11), 3844-3847; (c) Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y., Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. ACS Nano 2010, 4 (3), 1443-1450.
    14. (a) Wang, C.; John Appleby, A.; Little, F. E., Electrochemical study on nano-Sn, Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes. J. Power Sources 2001, 93 (1–2), 174-185; (b) Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B., Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. Adv. Mater. 2007, 19 (17), 2336-2340.
    15. (a) Chan, C. K.; Zhang, X. F.; Cui, Y., High Capacity Li Ion Battery Anodes Using Ge Nanowires. Nano Lett. 2007, 8 (1), 307-309; (b) Lu, X.; Fanfair, D. D.; Johnston, K. P.; Korgel, B. A., High Yield Solution−Liquid−Solid Synthesis of Germanium Nanowires. Journal of the American Chemical Society 2005, 127 (45), 15718-15719; (c) Lee, H.; Kim, M. G.; Choi, C. H.; Sun, Y.-K.; Yoon, C. S.; Cho, J., Surface-Stabilized Amorphous Germanium Nanoparticles for Lithium-Storage Material. The Journal of Physical Chemistry B 2005, 109 (44), 20719-20723.
    16. Cui, Y.-H.; Xue, M.-Z.; Wang, X.-L.; Hu, K.; Fu, Z.-W., InP as new anode material for lithium ion batteries. Electrochemistry Communications 2009, 11 (5), 1045-1047.
    17. Bruce, P. G.; Scrosati, B.; Tarascon, J.-M., Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition 2008, 47 (16), 2930-2946.
    18. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407 (6803), 496-499.
    19. (a) Han, S.; Jang, B.; Kim, T.; Oh, S. M.; Hyeon, T., Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-Ion Battery Anodes. Advanced Functional Materials 2005, 15 (11), 1845-1850; (b) Park, M.-S.; Wang, G.-X.; Kang, Y.-M.; Wexler, D.; Dou, S.-X.; Liu, H.-K., Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries. Angewandte Chemie 2007, 119 (5), 764-767; (c) Wang, Y.; Djerdj, I.; Smarsly, B.; Antonietti, M., Antimony-Doped SnO2 Nanopowders with High Crystallinity for Lithium-Ion Battery Electrode. Chemistry of Materials 2009, 21 (14), 3202-3209; (d) Wang, Y.; Zeng, H. C.; Lee, J. Y., Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers. Adv. Mater. 2006, 18 (5), 645-649.
    20. Deng, D.; Lee, J. Y., Hollow Core–Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage. Chemistry of Materials 2008, 20 (5), 1841-1846.
    21. Read, J.; Foster, D.; Wolfenstine, J.; Behl, W., SnO2-carbon composites for lithium-ion battery anodes. J. Power Sources 2001, 96 (2), 277-281.
    22. (a) Wang, Q.; Wen, Z.; Li, J., Solvent-Controlled Synthesis and Electrochemical Lithium Storage of One-Dimensional TiO2 Nanostructures. Inorganic Chemistry 2006, 45 (17), 6944-6949; (b) Qiu, Y.; Yan, K.; Yang, S.; Jin, L.; Deng, H.; Li, W., Synthesis of Size-Tunable Anatase TiO2 Nanospindles and Their Assembly into Anatase@Titanium Oxynitride/Titanium Nitride−Graphene Nanocomposites for Rechargeable Lithium Ion Batteries with High Cycling Performance. ACS Nano 2010, 4 (11), 6515-6526; (c) Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B., TiO2(B) Nanowires as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte. Adv. Mater. 2006, 18 (19), 2597-2600; (d) Wang, D.; Choi, D.; Yang, Z.; Viswanathan, V. V.; Nie, Z.; Wang, C.; Song, Y.; Zhang, J.-G.; Liu, J., Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2. Chemistry of Materials 2008, 20 (10), 3435-3442.
    23. (a) Chen, J.; Xu, L.; Li, W.; Gou, X., α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Adv. Mater. 2005, 17 (5), 582-586; (b) Zhou, G.; Wang, D.-W.; Li, F.; Zhang, L.; Li, N.; Wu, Z.-S.; Wen, L.; Lu, G. Q.; Cheng, H.-M., Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials 2010, 22 (18), 5306-5313.
    24. (a) Wang, G. X.; Chen, Y.; Konstantinov, K.; Lindsay, M.; Liu, H. K.; Dou, S. X., Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources 2002, 109 (1), 142-147; (b) Wu, Z.-S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.-M., Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano 2010, 4 (6), 3187-3194.
    25. Needham, S. A.; Wang, G. X.; Liu, H. K., Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J. Power Sources 2006, 159 (1), 254-257.
    26. Park, J. C.; Kim, J.; Kwon, H.; Song, H., Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials. Adv. Mater. 2009, 21 (7), 803-807.
    27. Kim, B.-C.; Takada, K.; Ohta, N.; Seino, Y.; Zhang, L.; Wada, H.; Sasaki, T., All solid state Li-ion secondary battery with FeS anode. Solid State Ion. 2005, 176 (31–34), 2383-2387.
    28. Lai, C.-H.; Huang, K.-W.; Cheng, J.-H.; Lee, C.-Y.; Hwang, B.-J.; Chen, L.-J., Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J. Mater. Chem. 2010, 20 (32), 6638-6645.
    29. (a) Yan, J. M.; Huang, H. Z.; Zhang, J.; Liu, Z. J.; Yang, Y., A study of novel anode material CoS2 for lithium ion battery. J. Power Sources 2005, 146 (1–2), 264-269; (b) Wang, Q.; Jiao, L.; Han, Y.; Du, H.; Peng, W.; Huan, Q.; Song, D.; Si, Y.; Wang, Y.; Yuan, H., CoS2 Hollow Spheres: Fabrication and Their Application in Lithium-Ion Batteries. The Journal of Physical Chemistry C 2011, 115 (16), 8300-8304.
    30. Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R., Nanophase ZnCo2O4 as a High Performance Anode Material for Li-Ion Batteries. Advanced Functional Materials 2007, 17 (15), 2855-2861.
    31. Qu, B.; Zhang, M.; Lei, D.; Zeng, Y.; Chen, Y.; Chen, L.; Li, Q.; Wang, Y.; Wang, T., Facile solvothermal synthesis of mesoporous Cu2SnS3 spheres and their application in lithium-ion batteries. Nanoscale 2011, 3 (9), 3646-3651.
    32. Zhou, L.; Zhao, D.; Lou, X. W., Double-Shelled CoMn2O4 Hollow Microcubes as High-Capacity Anodes for Lithium-Ion Batteries. Adv. Mater. 2012, 24 (6), 745-748.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE