研究生: |
葉仁豪 Yeh, Jen-Hao |
---|---|
論文名稱: |
具奈米結構金屬薄膜於感測器之應用 Nano-texture Metal Thin Film for Sensors Applications |
指導教授: | 方維倫 |
口試委員: |
鄭裕庭
徐文光 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 陽極氧化鋁 、溫度感測器 、應變感測器 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用奈米多孔隙陽極氧化鋁模板轉移技術製作新型感測器,利用此一技術設計、分析與製作新型壓阻式感測器之應用,分別為溫度感測器、應變感測器及曲率感測。而現今微機電系統 (Micro-Electro-Mechanical System, MEMS) 技術,主要是利用半導體微製程技術製作微元件於矽基板之上,而近年隨著尺度趨於縮小進入奈米結構尺寸,傳統製作奈米結構設備昂且鎖時成為製作奈米元件的最大問題。因此本文整合金屬薄膜沉積於奈米多孔隙陽極氧化鋁模板形成奈米質地結構於矽基板及PET可撓性基板上,用於開發新型感測特性之感測器,透過金屬薄膜沉積於陽極氧化鋁薄膜上形成奈米質地結構作為壓阻感測特性,並利用二階段陽極氧化法製程技術以及微奈米加工術方法改善可撓性基板之金屬薄膜附著性。本研究成功的開發新型壓阻感測型式之壓阻式感測器,並對於新型溫度感測器、應變感測器及曲率感測進行特性分析與模擬驗證,未來可做為後續研究新型低溫製程壓阻式感測器之起端。
This study, we present nanoporous anodic aluminum template transformation technique to fabricate novel sensor. Using this technique to design, analysis and fabricate novel pizeoresistance sensors. They are temperature sensor, strain sensor and bending curvature sensor. Now the day, the technology of Micro- Electro- Mechanical System (MEMS) is primary using the semiconductor manufacture technology to manufacture micro system on silicon substrate. These days, with scale is going down to nano scale structure, the facilities of traditional manufacture in nano structure are expensive and spend lots of time becoming the largest problem in manufactory nano devices. Therefore, in this paper, we integrate metal thin film deposited on np-AAO template formatting nano-texture structure on silicon substrate and flexible PET substrate to develop sensor of novel sensing characteristics. By using two step anodizing fabrication process and micro/nano fabrication process to improve the adhesion between flexible substrate and metal thin film. This study has been succeed developed novel type of pizeorsistane of pizeoresistance sensor. The novel temperature sensor, strain and bending curvature have been analyzed characteristic and simulation verified. In the future, it could be used for novel low temperature fabrication process for pizeoresistance sensors in the future.
[1] D. Dobrev, J. Vetter, N. Angert, and R. Neumann, “Growth of ion single crystal in the etched ion tracks of polymer foils,” Appl. Phys. A vol.72,pp729, 2001.
[2] A.E. Saunders, P.S. Shah, M.B. Sigman, T. Hanrath, H.S. Hwang, K.T. Lim, K.P. Johnston, and B.A. Korgel, “Inverse opal nanocrystal super lattice films,” Nano Lett. Vol.4, pp1943, 2004.
[3] H. Masuda and K. Fukuda, “Ordered Metal Nanohole Array Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina,” Science, Vol. 268, pp.1466-1468, 1995.
[4] W. Lee, K. Schwirn, M. Steninhart, E. Pipple, R. Scholz, and U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium,” Nature Nanotechnology, Vol. 3, pp 234-249, 2008.
[5] K. Lee, Y. Tang, and M. Ouyang, “Self-Ordered, Controlled Structure Nanoporous Mambranes Using Constant Current Anodization,” NANO LETTERS, pp. 4624-4629, 2008.
[6] C. Hong, T.-T. Tang, C.-Y. Hung, R.-P. Pan and W. Fang, “Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications,” NANOTECHNOLOGY, Vol. 21, 2010
[7] P.-H. Lo, C. Hong, S.-C. Lo, and W. Fang, “Implementation of inductive proximity sensor using nanoporous anodic aluminum oxide layer,” TRANSDUCERS’11, pp1871-1874, 2011.
[8] D. Ding, Z. Chen, S. Rajaputra and V. Singh, “Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode,” Sensors and Actuators B, Vol.124, pp. 12–17, 2007.
[9] B. Das, and C. Garman, “Capacitance-Voltage Characterization of Thin Film Nanoporous Alumina Templates,” Microelect J., pp. 695-699, 2006.
[10] B. Das, and S. P. Mcginnis, “Novel Template Based Semiconductor Nanostructures and Their Application,” Appl. Phys. A, pp. 681-688, 2000.
[11] H. Masuda, and K. Fukuda, “Ordered Metal Nanohole Arrays Made by Two-Step Replication of Honeycomb Structure of Anodic Alumina,” Science, 268,pp1466-1468, 1995.
[12] P. G. Miney, P.E. Colavita,M. V. Schiza, R. J. Priore, F. G. Haibach and M. L. Myrick, “Growth and Characterization of A porous Aluminum Oxide Film Formed On An Electrically Insulating Support,” Electrochem. Solid state Lett., Vol. 6, ppB42-B45, 2003.
[13] Y. Zhao, M. Chen, Y. Zhang, T. Xu, and W. Liu, “A Facile Approach to Formation of Through-Hole Porous Anodic Aluminum Oxide Film,” Matter. Lett., Vol. 59, pp40-43, 2005.
[14] F. Keller, M.S. Hunter, and D. L. Robinson, “Structural features of coating on aluminum ,” J. Electro. Soc.vol 100, pp. 411, 1953.
[15] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays eith a 50-420nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., Vol. 84, pp6023-6026, 1998.
[16] M. A. Barrett and A. B. Winterbottom, “1st international congress on metal corrosion, 1961” Butterworth & Co., London, pp657, 1962.
[17] G.E. Thompson, “Porous anocdic Alumina: fabrication, characterization and applications,” Thin Solid Film, Vol. 297, pp192-201, 1997.
[18] D. H. Choi, P. S. Lee W. Hwang, K.H. Lee, H. C. Park, “Measurement of the pore sizes for anodic aluminum oxide(AAO),” Current Appied Physics, Vol. 6S1, pp.e125-e129, 2006.
[19] D. Routkevitch, A. N. Govyadinov and P. P. Mardilovich, "Automated monitoring and analysis of social behavior in Drosophila,” MEMS, 2000.
[20] L.-T. Chena, C.-Y. Lee, and W.-H. Cheng, “MEMS-based humidity sensor with integrated temperature compensation mechanism,” Sensors & Actuators A, Vol. 147, pp522-528, 2008.
[21] P.-Y. Wang and S.-C. Lu, “*8X8 CMOS Thermal Sensors for Enzymatic Glucose Detection,” IEEE SENSORS, pp. 459-463, 2010.
[22] H.-Y. Ma, Q.-A. Huang, M. Qin and T. Lu. “A micromachined silicon capacitive temperature sensor for wide temperature range applications,” J. Micromech. Microeng.,Vol.20, 2010
[23] 張熙臨, “微溫度感測器與加熱器之為熱晶片的設計與製造,” 國立成功大學航空太空工程工程碩士論文, pp8-9, 2004.
[24] http://www.eettaiwan.com/ART_8800300534_480302_TA_a41f7cf2.HTM
[25] P. Jackson, “The early days of Saunders-Rose foil strain gauge,” Strain, Vol. 26, pp61-66, 1990.
[26] A. L.Winsow, Strain Gauge Technology, 2nd ed. London, U.K.:EIsevier Applied Science, 1992.
[27] A.S. Khan and X. Wang, Strain Measurements and Stress Analysis. Upper Saddle River, NJ: Prentice-Hall, 2001.
[28] The Pressure, Strain, and Force Handbook. Rhinebeck, NY: Omega Press LLC, 1996.
[29] J.C. Anderson, “Thin film transducers and sensors.” J. Vaccum Sci. Technol., Vol, no.3 ,pp610-616,1986.
[30] S. Middelhoek, A. A. Bellekom, U. Dauderstadt, and J. French, “Reciew article: Silicon sensors,” Meas. Sci. Technol., Vol. 6, pp.1641-1658, 1995.
[31] W.P. Eaton and J. H. Smith, “Micromachined pressure sensors: Review and recent developments,” Smart Mater. Structure, Vol. 6, pp.530-590, 1997.
[32] A.L. Window, G.S. Holister, Strain Gauge Technology, 2nd Ed., New York NY: Applied Science Publisters LTD, 1983.
[33] C. S. Smith, “Piezoresistance Effect in Germanium and Silicon,” Phys. Rev Vol. 94, pp 42-49, 1954.
[34] W. Thomson (Lord Kelvin), “On The Electrodynamic Qualities of Metals,” Proc. Royal Society, pp 546-550, 1857.
[35] K. Rajanna, S. Mohan, “Longitudinal and Transverse Strain Sensitivity Of Gold Film,” J. Mater. Sci. Lett., Vol. 6, pp 1027–1029, 1987.
[36] K. Rajanna, S. Mohan, “Studies of Meandering Path Thin Film Strain Gage,” Sensors and Actuators A, Vol. 15, pp 297–303, 1988.
[37] J. Gouault, M. Hubin, G. Richon, B. Eudeline, “The Electrochemical Behavior of a Full Component (Dielectric and Cu/Ni Constantan Alloy) for Thin Film Strain Gage Deposited upon Steel-Substrate,” Vacuum, Vol. 27, pp 363–365, 1977.
[38] Y.Moser and M.A. M.Gijs, “Miniaturised flexible temperature sensor,” IEEE TRANSDUCERS’07, Lyon, France, June, pp. 2279-2282, 2007.
[39] C. Hong, L. Chu, A. Chiang, and W. Fang, "Nanotexture Electrode on Nanoporous AAO Dielectric for Micro Tactile Sensing Devices," 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento: IEEE, pp. 100-103, 2009.
[40] B. T. Chia, D. R. Chang, H. H. Liao, Y. J. Yang, W. P. Shih, F. Y. Chang and K. C. Fan, "Temperature sensor array using flexible substrate," IEEE MEMS’07, Hyogo, Japan, January, pp. 589-592, 2007.
[41] E.H. Sondheimer, “The mean free path of electrons in metals,” Advances in Physics, Vol. 1,1952.
[42] K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gosele, “Self Ordering Regimes of Porous Alumina : The 10% Porosity Rule,”Nano Lett., Vol. 7, pp.677-680,2002.
[43] G. Weiss, “Wheatstone Bridge Sensitivity,” IEEE Transactions on Instrument and Measurement, Vol. 18, pp.2-6, 1969.
[44] http://en.wikipedia.org/wiki/Strain_gauge
[45] L. Cao, T.-S. Kim, S. C. Mantell, D. L. Polla, “Simulation and Fabrication of Piezoresistive Membrane Type MEMS Strain Sensors,” Sensors and Actuators A, Vol. 80, pp 273–279, 2000.
[46] C. Hautamaki, S. Zurn, S.C. Mantell, D.L. Polla, “Experimental Evaluation of MEMS Strain Sensors Embedded in Composites,” Journal of Microelectromechanical Systems, Vol.8, pp 272–279, 1999.
[47] K. D. Wise, “Integrated sensors, MEMS, and Microsystems: Reflections on a fantastic voyage,” M.E. Dillon and M.R. Frazier, "Drosophila melanogaster locomotion in cold thin air.," The Journal of experimental biology, vol. 209, pp. 364-71, 2006.
[48] J. M. Chen and N. C. MacDonald, “Measuring the nonlinearity of silicon piezoresistance by tensile loading of a submicron diameter fiber using a microinstrument,” Rev. of Sci. Instrm., Vol.75, pp276-278, 2004.
[49] J. Engel, J. Chen, Z. Fan, C. Liu, “Polymer Micromachined Multimodal Tactile Sensors,” Sensors and Actuators A, Vol. 117, pp 50–61, 2005.
[50] F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chem. Mater., Vol 10, pp2470-2480, 1998.
[51] http://en.wikipedia.org/wiki/Polyethylene_terephthalate
[52] 王之妤, “三維奈米碳管與高分子整合製程之開發及其於撓性電容式感測元件之應用,” 國立清華大學動力機械研究所碩士論文, 2011.