簡易檢索 / 詳目顯示

研究生: 高鈺涵
Kao, Yu-Han
論文名稱: 人體通訊網路之人體通道傳輸
Body Area Network - Human Body Communication
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 黃元豪
Huang, Yuan-Hao
楊家驤
Yang, Chia-Hsiang
蔡佩芸
Tsai, Pei-Yun
馬席彬
Ma, Hsi-Pin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 63
中文關鍵詞: 人體通訊網路人體通道傳輸人體通道特性
外文關鍵詞: Body Area Network, Human Body Communication, Frequency Selective Digital Transmission, Human Body Characteristics
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,可攜式的個人娛樂產品和可攜式的健康照顧的儀器越來越多,而人體通訊網路(BAN)能讓這些產品及儀器使用的更方便和發揮最好的應用效果。BAN是無線和短距離的通訊系統。人體通道傳輸(HBC)是BAN中其中一種傳輸方法。HBC可以達到低能源消耗、高資料傳輸速率和能在好的SNR下操作。

    在此論文中,HBC收發器被提出並且介紹人體通道的特性。HBC是利用電場傳輸技術經由人體傳送訊號。人體通道就像帶通的濾波器由1MHz到100MHz和導體一般有高於空氣300到500倍的介電系數,因此人體被用來當作傳輸媒介。而人體通道有兩個主要的方向被大家討論,一個是頻率響應,它包含振福和相位的變化;另一個是雜訊特性,它包含60Hz能源線的影響和其他無線電波的干擾。

    論文中所提出的HBC系統操作的頻帶是18.375 MHz到23.625MHz並且利用frequency selective (FS)調變方法,而最高的資料傳輸速率是1.3125Mbps。整個系統的時脈是42MHz而中心頻率是21MHz。傳送端利用frequency selective digital transmission (FSDT)的方法和電極貼片來傳送訊號,因此不需要使用天線和一些RF元件。接收端包含訊號偵測、取樣點偵測時間同步和時脈飄移,並操作在84MHz下。功能上的模擬和實驗的結果都驗證了演算法的可行性並且顯示系統的成效。基於AWGN和實驗的通道結果,當傳送128byte的封包和傳輸速率為1.3125Mbps時,模擬的結果可以達到封包錯誤率低於10-2時SNR為-1.8dB。整個系統架構和邏輯設計都會在此論文中提出。而邏輯設計的驗證是利用FPGA實驗版。


    Body area network (BAN) is a solution for wearable personal entertainments and wearable healthcare. BAN is a wireless and short-range communication system. The human body communication (HBC) is one of the transmission technologies of BAN. HBC achieves low power consumption, high data rate and operating with good signal-to-noise ratio (SNR).

    In this thesis, we propose a transceiver of HBC and introduce the human body channel. The HBC system uses the electric field communication technology to transmit signal through human body. The human body channel is similar to a band-pass filter from 1 MHz to 100 MHz and a conductor which has 300 to 500 times better permittivity than air. Hence, human body is used as a transmission medium and is discussed in two parts. The frequency response which
    includes the change of amplitude and phase. And the noise characteristics which includes 60 Hz power-line noise and interferences of other devices.

    The proposed design of HBC system employs the bandwidth from 18.375 MHz to 23.625 MHz and supports the frequency selective (FS) spreader modulation scheme with maximum
    data rate of 1.3125 Mbps. The whole system is operating in 42 MHz frequency clock and 21 MHz frequency center. The transmitter uses the frequency selective digital transmission(FSDT) scheme so it doesn’t need mixer and RF device. The receiver contains packet detection, sample point detection, timing synchronization and clock drift synchronization with 84 MHz sampling rate. Functional simulations and experiments show the validity of these
    algorithms and system performance of the proposed transceiver. Under AWGN noise and the channel of experiment result scenario, the simulation results show that the packet error rate(PER) is less than 10−2 in SNR -1.8 dB with a payload of 128 octets and 1.3125 MHz data rate.
    The architecture and logic design of proposed receiver are also presented. The functionality of proposed logic design is verified by FPGA emulation.

    Contents Abstract i 1 Introduction 1 1.1 Overview of Wireless Body Area Network . . . . . . . . . . . . . . . . . . . 1 1.1.1 Purpose of WBAN . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Applications of WBAN . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation of the Thesis . . . . . . . . . 3 1.3 Main Contributions . . . . . . . . . . . . 4 1.4 Organization of the Thesis . . . . . . . . 4 2 The Human Body Communication . . . . . . . . 7 2.1 Features of HBC . . . . . . . . . . . . . . 7 2.2 Properties of HBC . . . . . . . . . . . . . 9 2.3 The Frequency Selective Digital Transmission Scheme . 9 2.4 The Human Body Channel . . . . . . . . . . . . . . . 12 2.4.1 The Frequency Response . . . . . . . . . . . . . . 12 2.4.2 The Noise Characteristics . . . . . . . . . . . . . 13 3 Proposed Architecture Design . . . . . . . . . . . . . 15 3.1 System Description . . . . . . . . . . . . . . . . . 15 3.2 Transmitter . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 Packet Structure . .. . . . . . . . . . . . . . . . 16 3.2.2 Transmit Mask . . . . . . . . . . . . . . . . . . . 20 3.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 Filter . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.2 Packet Detection and Sample Detection . . . . . . . 21 3.3.3 Timing Detection . . . . . . . . . . . . . . . . . 23 3.3.4 The Start of the Frame . . . . . . . . . . . . . . 24 3.3.5 Pilot Detection . . . . . . . . . . . . . . . . . 24 3.3.6 De-mapping . . . . . . . . . . . . . . . . . . . . 27 3.4 Simulation Results and Comparison . . . . . . . . . . 27 3.4.1 Simulation Results . . . . . . . . . . . . . . . . 27 3.4.2 Comparison . . . . . . . . . . . . . . . . . . . . 29 4 Logic Design . . . . . . . . . . . . . . . . . . . . . 31 4.1 Word-length Determination . . . . . . . . . . . . . . 31 4.1.1 Word Length Determination . . . . . . . . . . . . . 31 4.1.2 Word-length of the Proposed System . . . . . . . . 33 4.2 Transmitter Logic Design . . . . . . . . . . . . . . 33 4.2.1 Scrambler . . . . . . . . . . . . . . . . . . . . . 33 4.2.2 Serial-to-Parallel . . . . . . . . . . . . . . . . 35 4.3 Receiver Logic Design . . . . . . . . . . . . . . . 35 4.3.1 Packet Detection . . . . . . . . . . . . . . . . 36 4.3.2 Timing Detection . . . . . . . . . . . . . . . . 36 4.3.3 The Start of Frame . . . . . . . . . . . . . . . . 36 4.3.4 De-mapping . . . . . . . . . . . . . . . . . . . . 36 5 Experiment and Results . . . . . . . . . . . . . . . . 41 5.1 Experiment . . . . . . . . . . . . . . . . . . . . . 41 5.1.1 Measurement . . . . . . . . . . . . . . . . . . . 41 5.1.2 The Flow and the Results of Experiment . . . . . . 43 5.1.3 Comparison . . . . . . . . . . . . . . . . . . . . 48 5.2 FPGA Emulation . . . . . . . . . . . . . . . . . . . 48 5.2.1 Functionality Verification . . . . . . . . . . . . 48 5.2.2 Implementation Verification . . . . . . . . . . . . 50 6 Conclusions and FutureWorks . . . . . . . . . . . . . . 57 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . 57 6.2 Future Works . . . . . . . . . . . . . . . . . . . . 58

    [1] IEEE Standard for Local and Metropolitan Area Networks Part 15.6: Wireless Body Area Networks, IEEE 802.15.6 Std., 2012.
    [2] F. S. Lee and A. P. Chandrakasan, “A 2.5 nJ/bit 0.65 V Pulsed UWB Receiver in 90 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2851 –2859, Dec. 2007.
    [3] P. P. Mercier, D. C. Daly, and A. P. Chandrakasan, “An Energy-Efficient All-Digital UWB Transmitter Employing Dual Capacitively-Coupled Pulse-Shaping Drivers,” IEEE Journal of Solid-State Circuits, vol. 44, no. 6, pp. 1679 –1688, Jun. 2009.
    [4] C. C. Chan, W. C. Chou, C. W. Chen, Y. L. Ho, Y. H. Lin, and H. P. Ma, “Energy Efficient Diagnostic Grade Mobile ECG,” in Proc. IEEE 10th International New Circuits
    and Systems Conference, Jun. 2011.
    [5] N. E. Roberts, S. Oh, and D. D.Wentzloff, “Exploiting Channel Periodicity in Body Sensor Networks,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
    vol. 2, no. 1, pp. 4 –13, Mar. 2012.
    [6] M. Anis, G. Grau, and N. Wehn, “Ultra Low Power RF Transceiver Architecture for In-Body Communication System,” in 2010 IEEE Radio and Wireless Symposium, Jan.
    2010, pp. 575 –578.
    [7] S. J. Song, N. Cho, and H. J. Yoo, “A 0.2 mW 2 Mb/s Digital Transceiver Based on Wideband Signaling for Human Body Communications,” IEEE Journal of Solid-State
    Circuits, vol. 42, no. 9, pp. 2021 –2033, Sep. 2007.
    [8] S. J. Song, N. Cho, S. Kim, J. Yoo, S. Choi, and H. J. Yoo, “A 0.9 V 2.6 mW Body-Coupled Scalable PHY Transceiver for Body Sensor Applications,” in 2007 IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2007, pp. 366–609.
    [9] A. Fazzi, S. Ouzounov, and J. van den Homberg, “A 2.75 mW Wideband Correlation-Based Transceiver for Body-Coupled Communication,” in 2009 IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2009, pp. 204 –205,205a.
    [10] J. Bae, K. Song, H. Lee, H. Cho, L. Yan, and H. J. Yoo, “A 0.24 nJ/b Wireless Body-Area-Network Transceiver with Scalable Double-FSK Modulation,” in 2011 IEEE In-
    ternational Solid-State Circuits Conference Digest of Technical Papers, Feb. 2011, pp. 34 –36.
    [11] T. W. Chen, P. Y. Tsai, J. Y. Yu, and L. C. Y., “A 0.67 mW 14.55 Mbps OFDM-Based Sensor Node Transmitter for Body Channel Communications,” in 2011 IEEE Asian Solid
    State Circuits Conference, Nov. 2011, pp. 189 –192.
    [12] P. P. Mercier and A. P. Chandrakasan, “A 110 W 10 Mb/s Etextiles Transceiver for Body Area Networks with Remote Battery Power,” in 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2010, pp. 496 –497.
    [13] Samsung-ETRI’s EFC Proposal for HBC PHY, IEEE P802.15-10-0049-01-0006 Std.,Jan. 2010.
    [14] H. Komurasaki, T. Sano, T. Heima, K. Yamamoto, H. Wakada, I. Yasui, M. Ono, T. Miwa, H. Sato, T. Miki, and N. Kato, “A 1.8 V Operation RF CMOS Transceiver for 2.4 GHz-Band GFSK Applications,” IEEE Journal of Solid-State Circuits, vol. 38, no. 5, pp. 817 – 825, May 2003.
    [15] T. B. Remple, “USB On-The-Go Interface for Portable Devices,” in 2003 IEEE International Conference on Consumer Electronics, Jun. 2003, pp. 8 – 9.
    [16] J. Ruiz, J. Xu, and S. Shimamoto, “Propagation Characteristics of Intra-Body Communications for Body Area Networks,” in 2006 3rd IEEE Consumer Communications and
    Networking Conference, vol. 1, Jan. 2006, pp. 509 – 513.
    [17] K. Hachisuka, A. Nakata, T. Takeda, Y. Terauchi, K. Shiba, K. Sasaki, H. Hosaka, and K. Itao, “ Analysis of An Intra-Body Communication Device,” in 2003 12th International Conference on Solid-State Sensors, Actuators and Microsystems, vol. 2, Jun. 2003, pp. 1722 – 1725.
    [18] K. Fujii and K. Ito, “Evaluation of The Received Signal Level in Relation to The Size and Carrier Frequencies of TheWearable Device Using Human Body as A Transmission Channel,” in IEEE Antennas and Propagation Society International Symposium, vol. 1, Jun. 2004, pp. 105 – 108.
    [19] T. G. Zimmerman, “Personal Area Networks: Near-filed Intra-Body Communication,” IBM Systems Jourmal, vol. 35, no. 3,4, pp. 609–617, 1996.
    [20] M. Shinagawa, M. Fukumoto, K. Ochiai, and H. Kyuragi, “A Near-Field-Sensing Transceiver for Intrabody Communication Based on The Electrooptic Effect,” IEEE
    Transactions on Instrumentation and Measurement, vol. 53, no. 6, pp. 1533 – 1538, Dec. 2004.
    [21] H. I. Park, I. G. Lim, S. Kang, and W. W. Kim, “Human Body Communication System with FSBT,” in 2010 IEEE 14th International Symposium on Consumer Electronics, Jun. 2010, pp. 1 –5.
    [22] “Walsh-Hadamard Code.” [Online]. Available: http://en.wikipedia.org/wiki/Walsh$%$E2$%$80$%$93Hadamard code
    [23] L. H. Zhang, X. Z. Liu, J. Huang, and L. Wang, “Baseband System for Human Body Channel Communication,” in 2010 3rd International Conference on Biomedical Engineering and Informatics, vol. 2, Oct. 2010, pp. 778 –781.
    [24] T. C. W. Schenk, N. S. Mazloum, L. Tan, and P. Rutten, “Experimental Characterization of The Body-Coupled Communications Channel,” in 2008 IEEE International Symposium on Wireless Communication Systems., Oct. 2008, pp. 234 –239.
    [25] R. Xu, H. Zhu, and J. Yuan, “Electric-Field Intrabody Communication Channel Modeling with Finite-Element Method,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 3, pp. 705 –712, Mar. 2011.
    [26] W. C. Wang, Z. D. Nie, F. Guan, T. F. Leng, and L. Wang, “Experimental Studies on Human Body Communication Characteristics Based upon Capacitive Coupling,” in 2011
    International Conference on Body Sensor Networks, May 2011, pp. 180 –185.
    [27] Channel Model for Human Body Communication, IEEE P802.15-08-0077-01-0006 Std., Jal. 2010.
    [28] N. Cho, J. Yoo, S. J. Song, J. Lee, S. Jeon, and H. J. Yoo, “The Human Body Characteristics as A Signal Transmission Medium for Intrabody Communication,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 1080 –1086, May 2007.
    [29] N. Cho, L. Yan, J. Bae, and H. J. Yoo, “A 60 kb/s - 10 Mb/s Adaptive Frequency Hopping Transceiver for Interference-Resilient Body Channel Communication,” IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 708 –717, Mar. 2009.
    [30] P. S. Hall, “Antennas and Propagation for Body Centric Communocations,” in 2007 IET Seminar on Antennas and Propagation for Body-CentricWireless Communications, Apr. 2007, pp. 1 –4.
    [31] “Matched Filter.” [Online]. Available: http://en.wikipedia.org/wiki/Matched filter
    [32] K. Friedl, E. Schmautzer, and L. Fickert, “Effect of The New ICNIRP Guidelines on Exposure Evaluation of Electrical Power Systems,” in Proc. 3rd International Youth Conference on Energetics, Jul. 2011, pp. 1 –5.
    [33] “IEEE Standard for Safety Levels with Respect to Human Exposure to Ratio Frequency Eletromagnetic Field,” IEEE C95.1-1991, 1999.
    [34] T. V. Pham, Y. T. Kim, M. T. L. Thi, and H. A. Tuy, “An Empirical Channel Model for Human Body Communication,” in 2010 International Conference on Advanced Technologies for Communications (ATC), Oct. 2010, pp. 352 –355.
    [35] W. C.Wang, Z. D. Nie, F. Guan, T. F. Leng, and L. Wang, “Experimental Studies on Human Body Communication Characteristics Based Upon Capacitive Coupling,” in 2011
    International Conference on Body Sensor Networks (BSN), May 2011, pp. 180 –185.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE