研究生: |
吳彥達 Wu, Yan-Dar |
---|---|
論文名稱: |
高介電閘極氧化層和金屬閘極於矽和三五半導體之研究 The study of high k dielectrics and metal gates on Si and III-V semiconductor substrates for the advanced CMOS technology |
指導教授: |
黃倉秀
Huang, Tsung-Shiew 洪銘輝 Hong, Minghwei 郭瑞年 Kwo, Raynien |
口試委員: |
徐碩鴻
Hsu, Shuo-Hung 劉致為 Liu, Chee-Wee 郭治群 Guo, Jyh-Chyurn |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | 氧化鉿 、氧化鈦 、金屬閘極 、高介電係數氧化物 、矽基板 、三五半導體 |
外文關鍵詞: | HfO2, TiO2, Metal gate, high-k dielectric, Si wafer, III-V semiconductor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
展望未來半導體產業發展,元件尺寸持續縮小至15nm以下,高介電常數的閘極氧化物其介電係數需高於30以上,並且需高載子遷移率的通道材料取代使用SiO2/Si系統。另外,高介電常常數介電材料及三五化合物半導體也必須要能夠被整合在Si上。
本論文的研究主題分為三個部分:
一、在矽基板上,利用MBE成長的高介電氧化鉿薄膜作為基板,可以減少濺鍍成長氧化鉿時介面層的生成。高解析度穿遂式顯微鏡(High resolution transmission electron microscopy, HR-TEM)證實使用高介電氧化鉿薄膜作為基板介面層厚度(9 Å),較直接在矽基板成長介面層厚度(19Å)減少一半的厚度。以高介電氧化鉿作為基板與直接成長在矽基板的電性結果分別顯示介電值(dielectric constant, κ)為12.8和11.4、電容等效厚度(capacitance equivalent thickness, CET) 為1.8nm和2nm、漏電流密度為8.1x10-7A/cm2 and 3.8x10-3A/cm2。良好的電性結果顯示串連在氧化物和半導體的低介電層大幅減少。
二、利用濺鍍方式在氧化鉿(HfO2)摻雜鈦(Ti),由於氧化鈦擁有高介電係數約50-80,在氧化鉿裡加入鈦,可大大提升薄膜的介電係數。分別以矽晶圓和MBE成長的高介電氧化鉿薄膜為基版,將HfO2摻雜鈦Ti成長在其上,來進行研究。高解析度穿遂式顯微鏡(HR-TEM)證實使用高介電氧化鉿薄膜作為基板介面層厚度(8Å),直接在矽基板成長介面層厚度(12 Å)。以高介電氧化鉿作為基板與直接成長在矽基板的電性結果分別顯示介電值(κ)為21.4和13.4、電容等效厚度(CET) 為1.6nm和2.2nm、漏電流密度為2x10-2 A/cm2 and 0.31A/cm2。
三、氧化鋁(Al2O3)/氧化鎵與氧化釓(Ga2O3(Gd2O3))/砷化鎵銦組合(In0.2Ga0.8As)經850oC高溫退火後,成長鋁和鎳當電極。由高解析度穿遂式顯微鏡分析得知氧化物層經高溫退火後仍維持非結晶性(amorphous),氧化物和半導體介面非常清晰。電性方面,在電容電壓(capacitance-voltage)特性上,表現出很小的頻散(frequency dispersion),顯示費米能階在整個能帶隨著閘極電壓而自由調變;在同一金屬電極的條件下,平帶電壓(flat band voltage)不隨頻率改變,若換成另一種金屬電極,平帶電壓仍不隨頻率改變,顯示出平帶電壓只有隨著金屬的功函數(work function)在改變, 代表在金屬和氧化物介面上費米能階是自由的不會被釘拴(Fermi level unpining)。此外,我們推導不同電極在p-型和n-型電容上臨界電壓(threshold voltage),與準靜態電容電壓(quasi-static CV)觀察之結果相當吻合。
Looking beyond the 15 nm node ICs, the consensus is that not only high-κ dielectrics but also appropriate channel material should replace the long-standing SiO2/Si system. The combination of high-κ dielectrics with channel of the III-Vs will have to be integrated onto Si.
The themes of this work were divided into three parts:
1. Silicon wafer and MBE-grown HfO2 thin template were used as substrates for sputtering deposition. From TEM pictures, the interfacial layer thickness of HfO2 deposited on Si and MBE-grown thin HfO2 template is 19.3 Å and 9 Å. At -1V, the leakage density is 3.8x10-3A/cm2 and 8.1x10-7A/cm2 for HfO2/Si and HfO2/(MBE-grown thin HfO2 template) samples. For HfO2/(MBE-grown thin HfO2 template) sample, a maximum value of capacitance at 1 kHz is 151pF, yielding a dielectric constant of 12.8 with the capacitance equivalent thickness (CET) of 17.8Å. The capacitance-voltage curves of HfO2/(MBE-grown thin HfO2 template) sample show a minor frequency dispersion of capacitance. The interfacial improvement and the enhanced electrical properties of the HfO2 film were obtained with MBE-grown thin HfO2 template.
2. HfO2 was combined with TiO2 to increase the dielectric constant. From TEM, the oxide thickness of Ti-doped HfO2 on Si and MBE-grown HfO2 template is 76 Å and 87 Å. The thickness of interfacial layer for Ti-doped HfO2 on Si and MBE-grown HfO2 template is 12Å and 8Å. At Vfb+1V, the leakage current density of Ti-doped HfO2 on Si and MBE-grown HfO2 template was 0.31 and 2x10-2 A/cm2. According to the CV curves, the calculated flat-band voltage of the Ti-doped HfO2 on Si and MBE-grown template was 0.15 and 0.28 volt. From the CV curves modified with two-frequency model, the calculated dielectric constant of Ti-doped HfO2 on Si and MBE-grown template is 13.4 and 21.4 with capacitance equivalent thickness of 22Å and 16 Å.
3. For the Al2O3/Ga2O3(Gd2O3)/In0.2Ga0.8As system, an atomically sharp oxide/semiconductor interface and amorphous GGO without any re-crystallization indicates the robustness and thermal stability of the hetero-structures. Both p- and n-MOS capacitors show very small frequency dispersion ranging from 2.2% to 4.4% (10 kHz–500 kHz) in the accumulation region, indicating the high-quality gate dielectric stack and GGO/In0.2Ga0.8As interface. For MOS capacitors with the same type of substrate and different metal gates, the differences between the Vfb’s are in good agreement with the differences in metal work functions, indicating unpinned Fermi-levels at the metal/dielectric interfaces. These are due to the perfected interfaces on both oxide/semiconductor and metal/oxide, revealing Fermi- level unpinning at both interfaces. Moreover, we have further derived the Vth’s of the p- and n-MOS capacitors with different metal gates. The present derived Vth values may not be very accurate, however, are in a good agreement with those observed on quasi-static C-V curves.
In summary, the results in this dissertation demonstrate MBE-grown thin template is a good buffer layer to decrease the plasma bombardment during the sputtering process, mixing TiO2 into HfO2 is effectively to increase the dielectric constant value, and Vth’s of the p- and n-MOS capacitors with different metal gates was derived.
Chapter 1
[1] Gordon E. Moore, “Cramming More Components Onto Integrated Circuits”, Electronics, 38, 114-117, (1965)
[2] http://en.wikipedia.org/wiki/Moore's_law
[3] M. Depas, B. Vermeire, P. W. Mertens, R. L. Van Meirhaeghe and M. M. Heyns, “ Determination of tunneling parameters in ultra-thin oxide layer poly-Si/SiO2/Si structures”, Solid-state Electron. 38, 1465, (1995).
[4] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide n MOSFET”, IEEE Electron Device lett., 18, 209, (1997).
[5] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, and G. Timp, “The electronic structure at the atomic scale of ultrathin gate oxides” Nature (London) 399, 758 , (1999).
[6] J. B. Neaton, D. A. Muller, and N. W. Ashcroft, “Electronic Properties of the Si/SiO2 interface from First Principles”, Phys. Rew. Lett. 85, 1298, (2000).
[7] Wilk G. D., Wallace R. M. and Anthony J. M., ”High- gate dielecrics: Current status and materials properties considerations”, J. Appl. Phys. 89, 5243, (2001).
[8] R. M. Wallace and G. D. Wilk, “Alternative Gate Dielectrics for Microelectronics”, Materials Research Bulletin, March, (2002).
[9] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric”, IEEE Electron Devices Letters, 21, 181, ( 2000).
[10] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. T roeger, P. Vandervoorn, S. Williams, and K. Zawadzki, “A 45nm Logic Technology with High-+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning,and 100% Pb-free Packaging”, IEDM Technical Dig., 247, (2007).
[11] P. Bai, C Auth, S. Balakrishnan, M. Bost, R. Brain, V. Chikarmane, R. Heussner, M. Hussein, J. Hwang, D. Ingerly, R. James, J. Jeong, C. Kenyon, E. Lee, S.-H. Lee, N. Lindert, M. Liu, Z. Ma, T. Marieb, A. Murthy, R. Nagisetty, S. Natarajan, J. Neirynck, A. Ott, C. Parker, J. Sebastian, R. Shaheed, S. Sivakumar, J. Steigerwald, S. Tyagi, C. Weber, B. Woolery, A. Yeoh, K. Zhang, M. Bohr, “A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low- ILD and 0.57μm2 SRAM cell”, IEDM Tech. Dig., 657, (2004).
[12] T. Mimura, and M. Fukuta, “Status of the GaAs metal-oxide-semiconductor technology”, IEEE Trans. Electron Devices, 27, 1147, (1980).
[13] C. W. Wilmsen, Physics and chemistry of III-V compound semiconductor interfaces, Plenum Press, New York, (1985).
[14] C. L. Chen, F. W. Smith, B. J. Clifton, L. J. Mahoney, M. J. Manfra, and A. R. Calawa, “High-power-density GaAs MISFETs with a low-temperature-grown epitaxial layer as the insulator”, IEEE Electron Device Lett., 12, 306, (1991).
[15] E. I. Chen, N. Holonyak, and S. A. Maranowski, “AlXGa1-XAs-GaAs metal-oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs”, Appl. Phys. Lett., 66, 2688, (1995).
[16] T. Waho, and F. Yanagawa, “ A GaAs MISFET using an MBE-grown CaF2 gate insulator layer”, IEEE Electron Device Lett., 9, 548, (1988).
[17] G. W. Pickrell, J. H. Epple, K. L. Chang, K. C. Hsieh, and K. Y. Cheng, “Improvement of wet-oxidized AlXGa1-XAs (x~1) through the use of AlAs/GaAs digital alloys”, Appl. Phys. Lett., 76, 2544, (2000).
[18] S. Yokoyama,K. Yukitomo, M. Hirose, Y. Osaka, A. Fischer, and K. Ploog, “GaAs MOS structures with Al2O3 grown by molecular beam reaction”, Surf. Sci., 86, 835, (1979).
[19] J. Reed, G. B. Gao, A. Bochkarev, and H. Morkoc, “Si3N4/ Si/ Ge/ GaAs metal-insulator-semiconductor structures grown by in situ chemical vapor deposition”, J. Appl. Phys., 75, 1826, (1994).
[20] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices”, 3rd edition, John Wiley & Sons, Inc., Hoboken, New Jersey, USA (2007).
[21] M. Hong, J. P. Mannaerts, J. E. Bowers, J. Kwo, M. Passlack, W.-Y. Hwang, and L. W. Tu, “Novel Ga2O3(Gd2O3) passivation techniques to produce low Dit oxide-GaAs interfaces”, J. Cryst. Growth 175, 422, (1997).
[22] J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, A. M. Sergent, and R. L. Masaitis, “Passivation of GaAs using (Ga2O3)1-X(Gd2O3)X, 0≦X≦1.0 films”, Appl. Phys. Lett. 75, 1116, (1999).
[23] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation”, Science 283, 1897, (1999).
[24] M. L. Huang, Y. C. Chang, C. H. Chang, T. D. Lin, J. Kwo, T. B. Wu, and M. Hong, “Energy-band parameters of atomic-layer-deposition-Al2O3/InGaAs heterostructures”, Appl. Phys. Lett., 89, 012903, (2006).
[25] C. H. Chang, Y. K. Chiu, Y. C. Chang, K. Y. Lee, T. D. Lin, T. B. Wu, M. Hong, and J. Kwo, “Interfacial self-cleaning of atomic layer deposition of HfO2 gate dielectrics on In0.15Ga0.85As”, Appl. Phys. Lett., 89, 242911, (2006).
[26] Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters”, Appl. Phys. Lett., 92, 072901, (2008).
[27] K. Y. Lee, Y. J. Lee, P. Chang, M. L. Huang, Y. C. Chang, M. Hong, and J. Kwo,” Achieving 1nm capacitive effective thickness in atomic layer deposited HfO2 on In0.53Ga0.47As”, Appl. Phys. Lett., 92, 252908, (2008).
[28] N. Goel, D. Heh, S. Koveshnikov, I. Ok, S. Oktyabrsky, V. Tokranov, R. Kambhampati, M. Yakimov, Y. Sun, P. Pianetta, C. K. Gaspe,M. B. Santos, J. Lee, P. Majhi, And W. Tsai, “Addressing The Gate Stack Challenge For High Mobility InxGa1-xAs Channels For NFETs”, –IEDM Tech. Dig., 363, (2008).
[29] Y. Xuan, Y. Q. Wu, T. Shen, T. Yang, and P. D. Ye, “ High performance submicron iversion-type E-mode InGaAs MOSFETs with ALD Al2O3, HfO2 and HfAlO as gate dielectrics”, IEDM. Tech. Dig., 637, (2007).
[30] S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky,”Metal-oxide-semiconductor capacitors on GaAs with high- gate oxide and amorphous silicon interface passivation layer”, Appl. Phys. Lett., 88, 022106, (2006).
[31] Injo Ok, Hyoung-sub Kim, Manhong Zhang, Chang-Yong Kang, Se Jong Rhee, Changhwan Choim, Siddarth A. Krishnan, Tackhwi Lee, Feng Zhu, Caurav Thareja, and Jack C. Lee, “Metal gate-HfO2 MOS structures on GaAs substrate with and without Si interlayer”, IEEE Electron Device Lett., 27, 145, (2006).
[32] H.-S. Kim, I. Ok, M. Zhang, C. Choi, T. Lee, F. Zhu, G. Thareja, L. Yu, and J. C. Lee, “Ultrathin HfO2(equivalent oxide thickness=1.1nm) metal-oxide-semiconductor capacitors on n-GaAs substrate with germanium passivation”, Appl. Phys. Lett., 88, 252906, (2006).
[33] Ming Zhu, Chih-Hang Tung, and Yee-Chia Yeo, “Aluminum oxynitride interfacial passivation layer for high-permittivity gate dielectric stack on gallium arsenide”, Appl. Phys. Lett. 89, 202903, (2006).
[34] K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, “1 nm equivalent oxide thickness in Ga2O3(Gd2O3)/In0.2Ga0.8As metal-oxide-semiconductor capacitors”, Appl. Phys. Lett. 92, 172904 (2008).
[35] K. H. Shiu, C. H. Chiang, Y. J. Lee, W. C. Lee, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, ”Oxide scalability in Al2O3/Ga2O3(Gd2O3) /In0.2Ga0.8As/ GaAs heterostructures”, J. Vac. Sci. Technol. B 26, 1132 (2008).
[36] A. Chen, M. Passlack, N. Medendorp, and D. Braddock, “Current conduction processes in high-κ Gd0.31Ga0.1O0.59/Ga2O3 gate dielectric stacks on GaAs”, Appl. Phys. Lett. 84, 2325 (2004).
[37] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition”, Appl. Phys. Lett. 86, 152904 (2005).
[38] Y. Hwang, M. A. Wistey, J. Cagnon, R. Engel-Herbert, and S. Stemmer, “Metal-oxide-semiconductor capacitors with erbium oxide dielectrics on In0.53Ga0.47As Channels”, Appl. Phys. Lett. 94, 122907 (2009).
[39] Y. L. Huang, P. Chang, Z. K. Yang, Y. J. Lee, H. Y. Lee, H. J. Liu, J. Kwo, J. P. Mannaerts, and M. Hong, "Thermodynamic stability of Ga2O3(Gd2O3)/GaAs interface", Appl. Phys. Lett. 86, 191905 (2005).
[40] S. Koveshnikov, N. Goel, P. Majhi, H. Wen, M. B. Santos, S. Oktyabrsky, V. Tokranov, R. Kambhampati, R. Moore, F. Zhu, J. Lee, and W. Tsai, “In0.53Ga0.47As based metal oxide semiconductor capacitors with atomic layer deposition ZrO2 gate oxide demonstrating low gate leakage current and equivalent oxide thickness less than 1 nm”, Appl. Phys. Lett. 92, 222904 (2008).
[41] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3”, Appl. Phys. Lett. 87, 252104 (2005).
[42] C.-W. Cheng and E. A. Fitzgerald, “In situ metal-organic chemical vapor deposition atomic-layer deposition of aluminum oxide on GaAs using trimethyaluminum and isopropanol precursors”, Appl. Phys. Lett. 93, 031902 (2008).
[43] Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, ”Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric”, Appl. Phys. Lett. 88, 263518 (2006).
[44] H.-S. Kim, I. Ok, M. Zhang, C. Choi, T. Lee, F. Zhu, G. Thareja, L. Yu, and J. C. Lee, “Ultrathin HfO2 (equivalent oxide thickness=1.1 nm) metal-oxide-semiconductor capacitors on n-GaAs substrate with germanium passivation”, Appl. Phys. Lett. 88, 252906 (2006).
[45] J. C. Sarace, R. E. Kerwin, and D. L. Klein, D , “Metal-Nitride-oxide-silicon Field Effect Transistors with Self-aligned Gate”, J. Solid-State Electron., 11, 653, (1968).
[46] P. L. Shah, “Refractory Metal Gate Processes for VLSI Application”, IEEE Trans. on Electron Dev. Vol., 26, 631, (1979).
[47] T. Shibata, K. Hieda, M. Sato, M. Konka, R.L.M. Dang, and H. Iizuka, “An Optimally Design Process for Submicron MOSFETs”, IEDM Tech. Dig., 647, (1981).
[48] B. L. Crowder, and S. Zirinsky, “One Micro MOSFET VLSI Technology: Part VII-Metal silicide interconnection technology-A future perspective,” IEEE Trans. Electron Dev. 26, 4, 369-371, (1979).
[49] H. J. Geipel, N. Hsieh, M. H. Ishaq, C. W. Koburger, and F. R. White, “Composite Silicide Gate Electrodes- Interconnection for VLSI Device Technologies”, IEEE Trans. Electron Dev. 27, 1417, (1980).
[50] C. Y. Wong, J.Y.-C. Sun, Y. Tour, C. S. Oh, R. Angelucci, and B. Davari, “Doping of N+ and P+ Poly-Si in a Dual-Gate CMOS Process”, int. Electron. Dev. Meet. Tech. Dig., 238, (1988).
[51] N. D. Arora, R. Rios, and C. L. Huang, “Modeling the Poly-Si Depletion Effect and its Impact on Submicrometer CMOS Circuit Performance,” IEEE Trans. Electron Dev., 42, 935, (1995).
[52] T. Ohguro, S. Nakanura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, H. Iwai, “Analysis of Resistance Behavior in Ti- and Ni-salicided Poly-Si Fims”, IEEE Trans. Electron Dev., 41, 2305, (1994).
[53] J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J. Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson, and L. C. Parrillo, “The Effects of Boron Penetration on p+ Polisilicon Gate PMOS Device”, IEEE Trans. Electron Dev., 37, pp. 1842, (1990).
[54] C. C. Hobbs, L. R. C. Fonseca, A. Knizhnik, V. Dhandapani, S. B. Samavedam, W. J. Taylor, J. M. Grant, L. G. Dip, D. H. Triyoso, R. I. Hegde, D. C. Gilmer, R. Garcia, D. Roan, M. L. Lovejoy, S. R. Rai, E. A. Hebert, H. –H. Tseng, S. G. H. Anderson, B. E. White and P. J. Tobin, “Fermi-level Pinning at the Polysilicon/ Metal-oxide Interface-Part II”, IEEE Trans. Electron Dev., 51, 978, (2004).
Chapter 2
[1] Alfred Cho,”Molecular beam epitaxy”, AIP Press, New York, ISBN:1563961326, (1994).
[2] E. H. C. Parker, “The technology and physics of molecular beam epitaxy”, Springer, London, England, ISBN:030641806, (1985).
[3] M. A. Herman and H. Sitter, ”Molecular beam epitaxy-Fundamentals and current status”, Springer-Verlag Berlin Herdelberg New York, ISBN:3540190759, (1989).
[4] W. Braun, "Applied RHEED," Springer-Verlag, ISBN:3540651993, (1999).
[5] David B. Williams and C. Barry Carter, “Transmission electron microscopy: a textbook for materials science”, Plenym Press, New York, ISBN:030645324X, (1996).
[6] B. Fultz and J. M. Howe, “Transmission electron microscopy and diffractometry of materials, 2nd edition”, Springer, New York, ISBN:354738851, (2002).
[7] B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon”, IEEE Trans. Electron Dev. 27, 606, (1980).
[8] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristic of the surface-state charge of thermally oxidized silicon,” J. Electrochem. Soc. 114, 266, (1967).
[9] C. T. Sah, T. H. Ning, and L. L. Tschopp “the scattering of electrons by surface oxide charges and by lattice vibrations at the silicon-silicon dioxide interface,” Surface Sci. 32, 561, (1972).
Chapter 3
[1] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M. R. Lin, “Limits of gate-oxide scaling in nano-transistors”, Symp. on VLSI Tech Dig., 90, (2000).
[2] B. W. Busch, O. Pluchery, Y. J. Chabal, D. A. Muller, R. L. Opila, J. R. Kwo, and E. Garfunkel, “Materials Characterization of Alternative Gate Dielectrics”, MRS Bulletin, March, 206, (2002).
[3] S. G. Lim, S. Kriventsov, T. Jackson, J. H. Haeni, D. G. Schlom, A. M. Balbashov, R. Uecker, P. Reiche, J. L. Freeouf, and G. Lucovsky, ”Dielectric functions and optical bandgaps of high- dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry”, J. Appl. Phys., 91, 4500, (2002).
[4] B. Y. Tsui and H. W. Chang, “Formation of interfacial layer during reactive sputtering of hafnium oxide”, J. Appl. Phys., 93, 10119, (2003).
[5] Y. Hoshino, Y. Kido, K. Yamamoto, S. Hayashi, and M. Niwa, “Characterization and control of the HfO2/Si(001) interfaces”, Appl. Phys. Lett., 81, 2650, (2002).
[6] C. Y. Kang, H. J. Cho, R. Choi, C. S. Kang, Y. H. Kim, S. J. Rhee, C. H. Choi, S. M. Akbar, and J. C. Lee, “ Effects of dielectric structure of HfO2 on carrier generation rate in Si substrate and channel mobility”, Appl. Phys. Lett., 84, 2148, (2004).
[7] P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitride and un-nitrided Si(100)”, J. Appl. Phys., 91, 4353, (2002).
[8] M. S. Akbar, S. Gopalan, J. J. Cho, K. Onishi, R. Choi, R. Nieh, C. S. Kang, Y. H. Kim , J. Han, S. Krishnan, and J. C. Lee, “High-performance TaN/HfSiON/Si metal-oxide-semiconductor structures prepared by NH3 post deposition anneal”, Appl. Phys. Lett., 82, 1757, (2003).
[9] M. R. Visokay, J. J. Chambers, A.L. P. Rotondaro, A. Shanware, and L. Colombo, ”Application of HfSiON as a gate dielectric material”, Appl. Phys. Lett., 80, 3183, (2002).
[10] M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo, A. Nishiyama, “Thermally stable ultra-thin nitrogen incorporated ZrO2 gate dielectric prepared by low temperature oxidation of ZrN”, Tech. Dig. IEDM., 20.3.1-10.3.4, (2001).
[11] A. Shanware, M. R. Visokay, J. J. Chamber, A. L. P. Rotondaro, H. Bu, M. J. Bevan, R. Khamankar, S. Aur, P. E. Nicollian, J. McPherson, and L. Colombo, “ Characterization and comparison of the charge trapping in HfSiON and HfO2 gate dielectrics”, Tech. Dig. IEDM., 38.6.1-38.6.4, (2003).
[12] W. C. Lee, “MBE-grown high quality oxide thin film for CMOS technology beyond 16nm node”, PH. D thesis, National Tsing Hua University, (2009).
[13] H. Takeuchi and T. J. King, Appl. Phys. Lett., “Scaling limits of hafnium-silicate films for gate-dielectric applications”, 83, 788, (2003).
[14] Y. C. Yeo, T. J. King, and C. Hu, Appl. Phys. Lett., “Direct tunneling leakage current and scalability of alternative gate dielectrics”, 81, 2091, (2002).
[15] H. Kato, T. Nango, T. Miyagawa, T. Katagiri, K. S. Seol, and Y. Ohki, “Plasma-enhanced chemical vapor deposition and characterization of high-permitivity hafnium and zirconium silicate films”, J. Appl. Phys., 92, 1106, (2002).
[16] A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt, and T. Zabel, “Physical and electrical characterization of Hafnium oxide and Hafnium silicate sputtered films”, J. Appl. Phys., 90, 6466, (2001).
[17] K. Y. Lee, “Study of sub-nanometer equivalent oxide thickness of MBE and ALD grown high-k gate dielectrics on silicon and In0.53Ga0.47As substrate”, PH.D thesis, Nation Tsing Hua University (2008).
Chapter 4
[1] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M. R. Lin, Symp. “Limits of gate-oxide scaling in nano-transistors” On VLSI Tech Dig., 90, (2000).
[2] B. W. Busch, O. Pluchery, Y. J. Chabal, D. A. Muller, R. L. Opila, J. R. Kwo, and E. Garfunkel, “Materials Characterization of Alternative Gate Dielectrics”, MRS Bulletin/March, 206, (2002).
[3] C. Lee, P. Ghosez, and X Gonze, “Lattice dynamics and dielectric properties of incipient ferroelectric TiO2 rutile”, Phys. Rev. B, 50, 13379 (1994)
[4] V. V. Afanas’ev, A. Stesmans, F. Chen, M. Li and S. A. Campbell, “Electrical conduction and band offsets in Si/HfXTi1-X/metal structure”, J. Appl. Phys., 95,7936 (2004)
[5] F. Chen, X. Bin, Chella, X. Shi, W. L. Gladfelter, S. A. Campbell, “A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics”, Microelectron. Eng., 72, 263 (2004)
[6] D. H. Triyoso, R. I. Hegde, S. Zollner, M. E. Ramon, S. Kalpat, R. Gregory X. D. Wang, J. Jiang, M. Raymond, R. Rai, D. Werho, D. Roan, B.E. White, and P. J. Tobin, “Impact of titanium addition on film characteristics of HfO2 gate dielectrics deposited by atomic layer deposition”, J. Appl. Phys., 98, 54104 (2005)
[7] B. Y. Tsui and H. W. Chang, “Formation of interfacial layer during reactive sputtering of hafnium oxide”, J. Appl. Phys. 93, 10119, (2003).
[8] Q. Fang, J. –Y. Zhang, Z. M. Wang, J. X. Wu, B. J. O’Sullivan, P. K. Hurley, T. L. Leedham, H. Vavies, M. A. Audier, C. Jimenez, J. –P. Senateur, I. and W. Boyd, “Investigation of TiO2-doped HfO2 thin films deposited by photo-CVD”, Thin Solid Films, 428, 263 (2003)
Chapter 5
[1] International Technology Roadmap for Semiconductors (ITRS), 2011 Update. http://www.itrs.net/
[2] M. Hong, J. Kwo, T. D. Lin and M. L. Huang, “InGaAs Metal-Oxide-semiconductor Devices with High Dielectrics for Science and Technology beyond Si CMOS”, MRS Bull., 34, 514 (2009).
[3] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Jin, J. Kavalieros, A. Majumdar, M. Metz and M. Radosavljevic, “Benchmarking nanotechnology for high-performance and low-power logic transistor applications”, IEEE Trans. Nanotechnol., 4, 153 (2005).
[4] M. Heyns and W. Tsai, “Ultimate Scaling of CMOS Logic Device with Ge and III-V materials”, MRS Bull., 34, 485-492 (2009).
[5] M. Hong, J. P. Mannaerts, J. E. Bower, J. Kwo, M. Passlack, W. Y. Hwang and L. W. Tu, “Novel Ga2O3(Gd2O3) passivation techniques to produce low Dit oxide-GaAs interfaces”, Journal of Crystal Growth, 175-176, 422 (1997).
[6] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Eipaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation”, Science, 283, 1897 (1999).
[7] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, “Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition”, Appl. Phys. Lett., 84, 434 (2004).
[8] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “ Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3”, Appl. Phys. Lett., 87, 252104 (2005).
[9] M. L. Huang, Y. C. Chang, C. H. Chang, T. D. Lin, J. Kwo, T. B. Wu, and M. Hong, “Energy-band parameters of atomic-layer-deposition Al2O3/InGaAs heterostructure”,Appl. Phys. Lett., 89, 012903 (2006).
[10] Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters”, Appl. Phys. Lett., 92, 072901 (2008).
[11] H. S. Kim, I. Ok, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, J. C. Lee, P. Majhi, N. Goel, W. Tsai, C. K. Gaspe and M. B. Santos, “A study of metal-oxide-semiconductor capacitors on GaAs, In0.53Ga0.47As, InAs, and InSb substrates using a germanium interfacial passivation layer”, Appl. Phys. Lett., 93, 062111 (2008).
[12] J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, A. M. Sergent, and R. L. Masaitis, “Passivation of GaAs using (Ga2O3)1-X(Gd2O3)X, Appl. Phys. Lett., 75, 1116 (1999).
[13] F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, “Demonstration of enhancement-mode p- and n-channel GaAs MOSFETS with Ga2O3(Gd2O3) As gate oxide”, Solid-State Electron., 41, 1751 (1997).
[14] Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, “Demonstration of submicron depletion-mode GaAs MOSFETs with negligible drain current drift and hysteresis”, IEEE Electron Device Lett., 20, 457 (1999).
[15] M. Hong, J. Kwo, P. J. Tsai, Y. C. Chang, M. L. Huang, C. P. Chen, and T. D. Lin, “III-V Metal-Oxide-Semiconductor Field-Effect Transistors with High k Dielectrics”, Jpn. J. Appl. Phys. Part 1, 46, 3167 (2007).
[16] K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Hong, J. Kwo, W. Tsai, “1nm equivalent oxide thickness in Ga2O3(Gd2O3)/In0.2Ga0.8As metal-oxide-semiconductor capacitors” Appl. Phys. Lett., 92, 17, 172904 (2008).
[17] K. H. Shiu, C. H. Chiang, Y. J. Lee, W. C. Lee, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, “Oxide scalability in Al2O3/Ga2O3(Gd2O3)/In0.20Ga0.80/GaAs heterostructures”, J. Vac. Sci. Technol. B, 26, 1132(2008)
[18] B. Yang, P. Ye, J. Kwo, M. Frei, H. Gossmann, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, “Impact of metal/oxide interface on DC and RF performance of depletion-mode GaAs MOSFET employing MBE grown Ga2O3(Gd2O3) as gate dielectric”, J. Cryst. Growth, 251, 837 (2003).
[19] D. R. Lide, CRC Handbook on Chemistry and Physics (CRC Press, Boca Raton, 2008).
[20] M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou and V. J. Fratello, “Low interface state density oxide-GaAs structures fabricated by in situ molecular beam epitaxy”, J. Vac. Sci. Technol. B, 14, 2297 (1996).
[21] T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, “ High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/Ga2O3(Gd2O3) as gate dielectrics”, Appl. Phys. Lett., 93, 033516 (2008).
[22] S. Abermann, J. K. Efavi, G. Sjoblom, M. C. Lemme, J. Olsson and E. Bertagnolli, “Processing and evaluation of metal gate/high-/Si capacitors incorporating Al, Ni, TiN, and Mo as metal gate, and ZrO2 and HfO2 as high- dielectric”, Microelectron. Eng., 84, 1635 (2007).
[23] Y. Xuan, T. Shen, M. Xu, Y. Q. Wu, and P. D. Ye, “High-performance surface channel In-rich In0.75Ga0.25 MOSFETs with ALD high-k as gate dielectric”, Tech. Dig. - Int. Electron Devices Meet., 371, (2008).
[24] X. Zou, J. P. Xu, C. X. Li, P. T. Lai, and W. B. Chen, “A threshold-voltage model of SiGe-channel pMOSFET without Si cap layer”, Micro-electron. Reliab., 47, 391, (2007).
[25] G.F. Niu, and G. Ruan, “Threshold Voltage and Inversion Charge Modeling of Graded SiGe-Channel Modulation-Doped p-MOSFET’s”, IEEE Trans., Electron Devices, 42, 2242 (1995).
[26] G.F. Niu, G. Ruan and T. A. Tang, “INVERSION CHARGE MODELING OF SiGe PMOS AND APPROACHES TO INCREASING THE HOLE DENSITY IN THE SiGe CHANNEL”, Solid-state Electron, 38, 323 (1995).
[27] T. D. Lin, Y. D. Wu, Y. C. Chang, T. H. Chiang, C. Y. Chuang, C. A. Lin, W. H. Chang, H. C. Chiu, W. Tsai, J. Kwo, and M. Hong, “Achieving nearly free Fermi-level movement and Vth Engineering in Ga2O3(Gd2O3)/In0.2Ga0.8As”,Device Res. Conf. Dig., 127, (2009).