簡易檢索 / 詳目顯示

研究生: 林儒奎
Lin, Ru-Kuei
論文名稱: 利用X光小角度散射法研究混合二棕櫚醯磷脂醯膽鹼(DPPC)和Triton X-100等界面分子形成之圓盤微胞結構
Small-Angle X-ray Scattering Studies on the Structure of Bicelles Formed by Mixing DPPC and Triton X-100
指導教授: 林滄浪
Lin, Tsang-Lang
口試委員: 鄭有舜
Jeng, U-Ser
王本誠
Wang, Pen-Cheng
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 89
中文關鍵詞: 圓盤微胞小角度散射脂質自組裝結構
外文關鍵詞: Bicelle, Small-Angle Scattering, Lipid, Self-assembly structures
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究混合界面活性劑Triton X-100和雙電性脂質二棕櫚醯磷脂醯膽鹼(DPPC)形成的圓盤形微胞,並研究攙入帶正電荷的脂質DOTAP和DC-Cholesterol的影響。電荷比例固定在 15 %及30 %,及固定總共長鏈脂質分子的莫耳濃度10 mM,研究混合不同莫耳數比例的Triton X-100,[Triton X-100]/[Lipid] = 0, 0.33, 0.66, 1, 2, 3, 4, 5, 7.5, 10,在水溶液中所形成的混合聚集結構。研究發現要大約加入1:1以上的Triton X-100才可以將所有的DPPC轉變成圓盤形微胞,比用diC7PC的0.25:1要高許多。利用小角度散射方法進行臨場變溫的實驗,量測其結構變化。並利用帶正電荷的混合圓盤形微胞加入DNA,形成複合聚集成多層圓盤堆疊結構,DNA則包夾在層與層的圓盤形微胞中間。從小角度X光散射量測數據,經擬合分析可以得到圓盤形微胞在1:1、1:1.5、1:2和1:3的結構變化,加入越多的Triton X-100會使圓盤形微胞的直徑從1:1時的102 Å,變成1:1.5時的72 Å,1:2時的63 Å,及1:3時的60 Å,會逐漸變小。由穿透式電子顯微鏡可觀察確認圓盤形微胞的存在。加入DOTAP或DC-Cholesterol只稍微影響圓盤微胞的大小,從小角度X光散射圖可觀察到加入DNA時會產生由多層堆疊結構造成的繞射峰。當升溫至超過DPPC長鏈的熔點溫度,Triton X-100/DPPC的圓盤微胞亦會融接成大的片狀結構,但沒有繞射峰,表示不會堆疊黏在一起,和diC7PC/DPPC的圓盤微胞不同。若是使用Ibuprofen代替Triton X-100則無法形成圓盤微胞。


    In this thesis, the aggregation structure of mixing DPPC with Triton-X100 was investigated by Small-Angle X-ray Scattering (SAXS) and TEM. Typically, disc-shaped bicelle can be formed by mixing the short-chain lipid with long-chain lipid at ratios of about 0.2 to 1. Other than using the short-chain lipids, it has also been found that using Triton X-100 may also form disc-shaped bicelles with DPPC. The incorporation of cationic lipid DOTAP and DC-Cholesterol in the mixed Triton X-100 and DPPC bicelle was also investigated. It was found that disc-shaped bicelle can be formed at Triton X-100 to DPPC molar ratio from about 1 to 3. As determined from SAXS, the diameter of the disc bicelle decreases from 102 Å at 1: 1 to 72 Å at 1: 1.5, 63 Å at 1: 2, and 60 Å at 1: 3 (DPPC to Triton X-100 molar ratio). The formation of the disc-shaped bicelle was also confirmed by TEM. The addition of DOTAP or DC-Cholesterol only slightly affects the size of the bicelles. Adding DNA into the cationic DPPC/Triton X-100 bicelle induces the formation of stacking multilamellar aggregation structure. The anionic DNA molecules were encapsulated between the cationic bilayers. When the DPPC/Triton X-100 bicelles are heated above the long-chain melting temperature, the bicelles are found to fuse into large sheets but they do not form multilamellar structure, which is different from the DPPC/diC7PC bicelles. It is likely that the long hydrophilic head group of the Triton-X100 could impede the formation of the multilamellar structure when the Triton X-100 molecules are solubilized into the DPPC bilayer at above the DPPC chain melting temperature.

    摘要 I 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 細胞膜 1 1.2 脂質 2 1.3 表面活性劑 3 1.4陽離子微脂粒基因載體 4 1.5 兩性分子自組裝結構 5 1.6 研究動機 7 第二章 文獻回顧 8 2.1 界面活性劑Triton X-100對雙層膜之影響16 8 2.2 脂質在溶解過程中DC-Cholesterol帶來的影響17 10 2.3 Ibuprofen對磷脂膜的影響18 11 第三章 實驗材料和原理儀器介紹 12 3.1實驗材料 12 3.1.1 脂質 (Lipid) 12 3.1.2 界面活性劑 Triton X-100 14 3.1.3去氧核醣核酸 (Deoxyribonucleic Acid) 15 3.1.4布洛芬 (Ibuprofen) 16 3.2 實驗原理 17 3.2.1 小角度X光散射(Small Angle X-ray Scattering) 17 3.3實驗儀器 24 3.3.1 X光小角度散射光束線 24 3.3.2 生物型穿透式電子顯微鏡 24 第四章 實驗方法及流程 29 4.1 小角度散射實驗 29 4.1.1 DPPC/Triton X-100和DPPC/Ibuprofen脂質體之合成 29 4.1.2 DPPC / Triton / Cationic Lipid帶正電脂質體之合成 30 4.1.3 DPPC / Triton / Cationic Lipid 複合體含DNA之合成 30 4.1.4 X光小角度散射實驗流程 31 4.2 穿透式電子顯微鏡樣品製作 32 4.3 擬合軟體Igor 33 第五章 實驗結果與討論 34 5.1 兩性分子和脂質形成之結構 34 5.1.1界面活性劑Triton X-100對DPPC脂質體之影響 34 5.1.2 DPPC/Triton X-100散射數據擬合分析 39 5.1.3 Ibuprofen對DPPC脂質體之影響 41 5.2 帶正電脂質和DPPC/Triton X-100形成之結構 44 5.2.1 DPPC/Triton X-100加入DC-Cholesterol之影響 44 5.2.2 DPPC/DC-Cholesterol/ Triton X-100散射數據擬合分析 50 5.2.3 DPPC/Triton X-100加入DOTAP之影響 56 5.2.4 DPPC/DOTAP/ Triton X-100散射數據擬合分析 63 5.3 加入DNA之影響和結構分析 69 5.4 平板微胞之熱穩定度 76 5.5 巨觀下的形態 81 第六章 結論 85 參考文獻 86

    1. Summary of Cell membrane
    http://biology4alevel.blogspot.tw/2014/09/27-summary-of-cell-membrane.html#more
    2. Yorek, A. A. S. a. M. A., Membrane lipid composition and cellular function. Lipid Research 1985, 26, 1015-1035.
    3. Chemical Structure of a Phospholipid.
    http://ib.bioninja.com.au/standard-level/topic-1-cell-biology/13-membrane structure/phospholipids.html
    4. Structure and formulas of some common detergents
    https://www.gbiosciences.com/
    (a)Uchegbua, I. F.; Vyasb, S. P., Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. of Pharmaceutics 1998, 172, 33–70; (b) Felgner, P.L. ; Marilynholm,T. R. G.; Roman, R ; Chan, H. W.; Wenz, M.; Gordon, J. P. N.; Ringold, M.; anielsen, M. lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Biochemistry 1987, 84, 7413-7417..
    6. Mechanism of cationic lipid-mediated delivery.
    https://www.thermofisher.com/tw/zt/home.html
    7. Kulkarni, C. V.; Wachter, W.; Iglesias-Salto, G.; Engelskirchen, S.; Ahualli, S., Monoolein: a magic lipid? Physical chemistry chemical physics 2011, 13 (8), 3004-21.
    8. Lipids in all their states.
    http://www.cbmn.u-bordeaux.fr/127-research-lipids-in-all-their-states.html
    9. Rubio, L.; Alonso, C.; Rodriguez, G.; Cocera, M.; Barbosa-Barros, L.; Coderch, L.; de la Maza, A.; Parra, J. L.; Lopez, O., Bicellar systems as vehicle for the treatment of impaired skin. European journal of pharmaceutics and biopharmaceutics 2014, 86 (2), 212-8.
    10. Lacapere, J. J.; Pebay-Peyroula, E.; Neumann, J. M.; Etchebest, C., Determining membrane protein structures: still a challenge! Trends in biochemical sciences 2007, 32 (6), 259-70.
    11. (a) Lichtenberg, D.; Ahyayauch, H.; Alonso, A.; Goni, F. M., Detergent solubilization of lipid bilayers: a balance of driving forces. Trends in biochemical sciences 2013, 38 (2), 85-93; (b) Lichtenberg, D.; Ahyayauch, H.; Goni, F. M., The mechanism of detergent solubilization of lipid bilayers. Biophysical journal 2013, 105 (2), 289-99; (c) Schnitzer, E.; Lichtenberg, D.; Kozlov, M. M., Temperature-dependence of the solubilization of dipalmitoylphosphatidylcholine (DPPC) by the non-ionic surfactant Triton X-100, kinetic and structural aspects. Chemistry and Physics of Lipids 2003, 126 (1), 55-76.
    12. Li, M.; Morales, H. H.; Katsaras, J.; Kucerka, N.; Yang, Y.; Macdonald, P. M.; Nieh, M. P., Morphological characterization of DMPC/CHAPSO bicellar mixtures: a combined SANS and NMR study. Langmuir, 2013, 29 (51), 15943-57.
    13. (a) Opella, S. H. P. a. S. J., Triton X-100 as the “Short-Chain Lipid” Improves the Magnetic Alignment and Stability of Membrane Proteins in Phosphatidylcholine Bilayers for
    Oriented-Sample Solid-State NMR Spectroscopy. J. Am. Chem. Soc.2010, 132, 12552–12553; (b) Carly S. Levin, J. K., Benjamin G. Janesko, Gustavo E. Scuseria,; Robert M. Raphael, a. N. J. H., Interactions of Ibuprofen with Hybrid Lipid Bilayers Probed by Complementary Surface-Enhanced Vibrational Spectroscopies. J. Phys. Chem. 2008, 112, 14168–14175; (c) Du, L.; Liu, X.; Huang, W.; Wang, E., A study on the interaction between ibuprofen and bilayer lipid membrane. Electrochimica Acta 2006, 51 (26), 5754-5760.
    14. Balazs, D. A.; Godbey, W., Liposomes for use in gene delivery. Journal of drug delivery 2011, 326497.
    15. (a) Anne E. Regelin, S. F., Laura Gurtesch, Claudia Prinz,; Gunter von Kiedrowski, U. M., Biophysical and lipofection studies of DOTAP analogs. Biochimica et biophysica acta 2000, 1464, 151-164; (b) Robert B. Campbell , S. V. B.; Straubinger, R. M., Phospholipid-cationic lipid interactions: in£uences on membrane and vesicle properties. Biochimica et biophysica acta 2001, 1512, 27-39.
    16. (a) Félix M. Goñi, Maria-Angeles Urbaneja, José-Luis R. Arrondo, Alicia Alonso, Aziz A. Durrani; Dennis Chapman, The interaction of phosphatidylcholine bilayers with Triton X-100. Eur. J. Biochem 1986; (b) Slotte, T. N. a. J. P., Comparison of Triton X-100 Penetration into Phosphatidylcholine and Sphingomyelin Mono- and Bilayers. Langmuir 2001, 17, 4724-4730
    17. Mattei, B.; Franca, A. D.; Riske, K. A., Solubilization of binary lipid mixtures by the detergent Triton X-100: the role of cholesterol. Langmuir 2015, 31 (1), 378-86.
    18. Jaksch, S.; Lipfert, F.; Koutsioubas, A.; Mattauch, S.; Holderer, O.; Ivanova, O.; Frielinghaus, H.; Hertrich, S.; Fischer, S. F.; Nickel, B., Influence of ibuprofen on phospholipid membranes. Phys Rev E Stat Nonlin Soft Matter Phys 2015, 91 (2), 022716.
    19. Singh, D., Small Angle Scattering Studies of Self Assembly in Lipid Mixtures. Ph.D. Dissertation,Johns Hopkins University, 2009.
    20. Hayter, J. B.; Penfold, J. An analytic structure factor for macroion solutions. Molecular Physics, 1981, 42, 109-118
    21. Avanti Polar Lipids
    http://www.avantilipids.com/
    22. DNA
    https://www.britannica.com/science/DNA

    QR CODE