研究生: |
林儒奎 Lin, Ru-Kuei |
---|---|
論文名稱: |
利用X光小角度散射法研究混合二棕櫚醯磷脂醯膽鹼(DPPC)和Triton X-100等界面分子形成之圓盤微胞結構 Small-Angle X-ray Scattering Studies on the Structure of Bicelles Formed by Mixing DPPC and Triton X-100 |
指導教授: |
林滄浪
Lin, Tsang-Lang |
口試委員: |
鄭有舜
Jeng, U-Ser 王本誠 Wang, Pen-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 圓盤微胞 、小角度散射 、脂質 、自組裝結構 |
外文關鍵詞: | Bicelle, Small-Angle Scattering, Lipid, Self-assembly structures |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究混合界面活性劑Triton X-100和雙電性脂質二棕櫚醯磷脂醯膽鹼(DPPC)形成的圓盤形微胞,並研究攙入帶正電荷的脂質DOTAP和DC-Cholesterol的影響。電荷比例固定在 15 %及30 %,及固定總共長鏈脂質分子的莫耳濃度10 mM,研究混合不同莫耳數比例的Triton X-100,[Triton X-100]/[Lipid] = 0, 0.33, 0.66, 1, 2, 3, 4, 5, 7.5, 10,在水溶液中所形成的混合聚集結構。研究發現要大約加入1:1以上的Triton X-100才可以將所有的DPPC轉變成圓盤形微胞,比用diC7PC的0.25:1要高許多。利用小角度散射方法進行臨場變溫的實驗,量測其結構變化。並利用帶正電荷的混合圓盤形微胞加入DNA,形成複合聚集成多層圓盤堆疊結構,DNA則包夾在層與層的圓盤形微胞中間。從小角度X光散射量測數據,經擬合分析可以得到圓盤形微胞在1:1、1:1.5、1:2和1:3的結構變化,加入越多的Triton X-100會使圓盤形微胞的直徑從1:1時的102 Å,變成1:1.5時的72 Å,1:2時的63 Å,及1:3時的60 Å,會逐漸變小。由穿透式電子顯微鏡可觀察確認圓盤形微胞的存在。加入DOTAP或DC-Cholesterol只稍微影響圓盤微胞的大小,從小角度X光散射圖可觀察到加入DNA時會產生由多層堆疊結構造成的繞射峰。當升溫至超過DPPC長鏈的熔點溫度,Triton X-100/DPPC的圓盤微胞亦會融接成大的片狀結構,但沒有繞射峰,表示不會堆疊黏在一起,和diC7PC/DPPC的圓盤微胞不同。若是使用Ibuprofen代替Triton X-100則無法形成圓盤微胞。
In this thesis, the aggregation structure of mixing DPPC with Triton-X100 was investigated by Small-Angle X-ray Scattering (SAXS) and TEM. Typically, disc-shaped bicelle can be formed by mixing the short-chain lipid with long-chain lipid at ratios of about 0.2 to 1. Other than using the short-chain lipids, it has also been found that using Triton X-100 may also form disc-shaped bicelles with DPPC. The incorporation of cationic lipid DOTAP and DC-Cholesterol in the mixed Triton X-100 and DPPC bicelle was also investigated. It was found that disc-shaped bicelle can be formed at Triton X-100 to DPPC molar ratio from about 1 to 3. As determined from SAXS, the diameter of the disc bicelle decreases from 102 Å at 1: 1 to 72 Å at 1: 1.5, 63 Å at 1: 2, and 60 Å at 1: 3 (DPPC to Triton X-100 molar ratio). The formation of the disc-shaped bicelle was also confirmed by TEM. The addition of DOTAP or DC-Cholesterol only slightly affects the size of the bicelles. Adding DNA into the cationic DPPC/Triton X-100 bicelle induces the formation of stacking multilamellar aggregation structure. The anionic DNA molecules were encapsulated between the cationic bilayers. When the DPPC/Triton X-100 bicelles are heated above the long-chain melting temperature, the bicelles are found to fuse into large sheets but they do not form multilamellar structure, which is different from the DPPC/diC7PC bicelles. It is likely that the long hydrophilic head group of the Triton-X100 could impede the formation of the multilamellar structure when the Triton X-100 molecules are solubilized into the DPPC bilayer at above the DPPC chain melting temperature.
1. Summary of Cell membrane
http://biology4alevel.blogspot.tw/2014/09/27-summary-of-cell-membrane.html#more
2. Yorek, A. A. S. a. M. A., Membrane lipid composition and cellular function. Lipid Research 1985, 26, 1015-1035.
3. Chemical Structure of a Phospholipid.
http://ib.bioninja.com.au/standard-level/topic-1-cell-biology/13-membrane structure/phospholipids.html
4. Structure and formulas of some common detergents
https://www.gbiosciences.com/
(a)Uchegbua, I. F.; Vyasb, S. P., Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. of Pharmaceutics 1998, 172, 33–70; (b) Felgner, P.L. ; Marilynholm,T. R. G.; Roman, R ; Chan, H. W.; Wenz, M.; Gordon, J. P. N.; Ringold, M.; anielsen, M. lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Biochemistry 1987, 84, 7413-7417..
6. Mechanism of cationic lipid-mediated delivery.
https://www.thermofisher.com/tw/zt/home.html
7. Kulkarni, C. V.; Wachter, W.; Iglesias-Salto, G.; Engelskirchen, S.; Ahualli, S., Monoolein: a magic lipid? Physical chemistry chemical physics 2011, 13 (8), 3004-21.
8. Lipids in all their states.
http://www.cbmn.u-bordeaux.fr/127-research-lipids-in-all-their-states.html
9. Rubio, L.; Alonso, C.; Rodriguez, G.; Cocera, M.; Barbosa-Barros, L.; Coderch, L.; de la Maza, A.; Parra, J. L.; Lopez, O., Bicellar systems as vehicle for the treatment of impaired skin. European journal of pharmaceutics and biopharmaceutics 2014, 86 (2), 212-8.
10. Lacapere, J. J.; Pebay-Peyroula, E.; Neumann, J. M.; Etchebest, C., Determining membrane protein structures: still a challenge! Trends in biochemical sciences 2007, 32 (6), 259-70.
11. (a) Lichtenberg, D.; Ahyayauch, H.; Alonso, A.; Goni, F. M., Detergent solubilization of lipid bilayers: a balance of driving forces. Trends in biochemical sciences 2013, 38 (2), 85-93; (b) Lichtenberg, D.; Ahyayauch, H.; Goni, F. M., The mechanism of detergent solubilization of lipid bilayers. Biophysical journal 2013, 105 (2), 289-99; (c) Schnitzer, E.; Lichtenberg, D.; Kozlov, M. M., Temperature-dependence of the solubilization of dipalmitoylphosphatidylcholine (DPPC) by the non-ionic surfactant Triton X-100, kinetic and structural aspects. Chemistry and Physics of Lipids 2003, 126 (1), 55-76.
12. Li, M.; Morales, H. H.; Katsaras, J.; Kucerka, N.; Yang, Y.; Macdonald, P. M.; Nieh, M. P., Morphological characterization of DMPC/CHAPSO bicellar mixtures: a combined SANS and NMR study. Langmuir, 2013, 29 (51), 15943-57.
13. (a) Opella, S. H. P. a. S. J., Triton X-100 as the “Short-Chain Lipid” Improves the Magnetic Alignment and Stability of Membrane Proteins in Phosphatidylcholine Bilayers for
Oriented-Sample Solid-State NMR Spectroscopy. J. Am. Chem. Soc.2010, 132, 12552–12553; (b) Carly S. Levin, J. K., Benjamin G. Janesko, Gustavo E. Scuseria,; Robert M. Raphael, a. N. J. H., Interactions of Ibuprofen with Hybrid Lipid Bilayers Probed by Complementary Surface-Enhanced Vibrational Spectroscopies. J. Phys. Chem. 2008, 112, 14168–14175; (c) Du, L.; Liu, X.; Huang, W.; Wang, E., A study on the interaction between ibuprofen and bilayer lipid membrane. Electrochimica Acta 2006, 51 (26), 5754-5760.
14. Balazs, D. A.; Godbey, W., Liposomes for use in gene delivery. Journal of drug delivery 2011, 326497.
15. (a) Anne E. Regelin, S. F., Laura Gurtesch, Claudia Prinz,; Gunter von Kiedrowski, U. M., Biophysical and lipofection studies of DOTAP analogs. Biochimica et biophysica acta 2000, 1464, 151-164; (b) Robert B. Campbell , S. V. B.; Straubinger, R. M., Phospholipid-cationic lipid interactions: in£uences on membrane and vesicle properties. Biochimica et biophysica acta 2001, 1512, 27-39.
16. (a) Félix M. Goñi, Maria-Angeles Urbaneja, José-Luis R. Arrondo, Alicia Alonso, Aziz A. Durrani; Dennis Chapman, The interaction of phosphatidylcholine bilayers with Triton X-100. Eur. J. Biochem 1986; (b) Slotte, T. N. a. J. P., Comparison of Triton X-100 Penetration into Phosphatidylcholine and Sphingomyelin Mono- and Bilayers. Langmuir 2001, 17, 4724-4730
17. Mattei, B.; Franca, A. D.; Riske, K. A., Solubilization of binary lipid mixtures by the detergent Triton X-100: the role of cholesterol. Langmuir 2015, 31 (1), 378-86.
18. Jaksch, S.; Lipfert, F.; Koutsioubas, A.; Mattauch, S.; Holderer, O.; Ivanova, O.; Frielinghaus, H.; Hertrich, S.; Fischer, S. F.; Nickel, B., Influence of ibuprofen on phospholipid membranes. Phys Rev E Stat Nonlin Soft Matter Phys 2015, 91 (2), 022716.
19. Singh, D., Small Angle Scattering Studies of Self Assembly in Lipid Mixtures. Ph.D. Dissertation,Johns Hopkins University, 2009.
20. Hayter, J. B.; Penfold, J. An analytic structure factor for macroion solutions. Molecular Physics, 1981, 42, 109-118
21. Avanti Polar Lipids
http://www.avantilipids.com/
22. DNA
https://www.britannica.com/science/DNA