簡易檢索 / 詳目顯示

研究生: 邱國維
Kuo-Wei Chiu
論文名稱: 水汽對化學氣相沉積法成長奈米碳管之探討
Effects of water vapor on the growth of Carbon nanotubes synthesized
指導教授: 戴念華
Nyan-Hwa Tai
黃金花
Jin-Hua Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 89
中文關鍵詞: 水汽奈米碳管
外文關鍵詞: water vapor, carbon nanotube
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以熱裂解化學氣相沉積法在快速升降溫系統中成長奈米碳管陣列,其中又分為單壁和多壁陣列的成長,兩者製程最大的不同點在於催化劑的選擇,多壁奈米碳管陣列使用的催化劑為鐵,成長高度可以達到100 μm 以上,而單壁陣列以鋁鐵鉬為催化劑,經過一系列的參數探討後可以大大提升品質,其ID/IG ratio約為0.03,而藉由拉曼分析可以知道鋁鐵鉬合金催化劑系統可以控制碳管管徑分佈,本研究並且探討鋁承載層所扮演的角色。
    本研究也探討在成長奈米碳管製程中導入水汽,設計不同導入水汽的時機,藉由電子顯微鏡和拉曼觀察其結構和品質的改變,並且由實驗的結果探討水汽對於奈米碳管成長的影響。


    In this work, a rapid heating and cooling system (RHCS) for synthesizing carbon nanotubes (CNTs) array through the thermal chemical vapor deposition (CVD) process is proposed. Depending on the catalyst been used, single-wall or multi-wall CNTs can be synthesized. The catalyst for multi-wall CNTs is Fe and the length of CNTs array is over 100 μm. For fabricating single-wall CNTs (SWNTs), the catalyst is Al/Fe/Mo and the ID/IG ratio of the synthesized single-wall CNTs is around 0.03. The longest SWNTs been synthesized is over 3μm. In this study, the influences of Al layer on the growth of SWNTs are discussed. Moreover, in order to enhance the CNT growth, water vapor was introduced into the chamber during CNT growth. Different timing for the introducing of water vapor into chamber was designed and the influences of water vapor on the CNT growth are investigated. Field-emission scanning electron microscope and Raman were adopted to study the variation of structure.

    中文摘要.....................................................................................................I 英文摘要………………………………………………………………...II 誌謝..........................................................................................................III 總目錄…………………………………………………………………..Ⅳ 表、圖目錄……………………………………………………………..Ⅶ 第一章 緒論..............................................................................................1 1-1 引言…………….............................................................................1 1-2 研究動機……………………………………………………….....2 第二章 文獻回顧………………………………………………………..6 2-1 奈米碳管應用………………………………………………….....6 2-1-1 奈米碳管場發射顯示器.....................................................6 2-1-2 奈米碳管場效電晶體…………………………………….7 2-1-3 奈米碳管氣體感測器…………………………………….8 2-2 奈米碳管陣列成長機制……………………………………….....9 2-3 奈米碳管陣列合成方法……………………………………….....9 2-4 水汽對垂直成長單壁奈米碳管的影響…….…………………..11 2-5 氧氣對垂直成長奈米碳管的影響…………………...….……...12 2-6 在低溫下以酒精當碳源成長單壁奈米碳管…………………...13 2-7 鋁鐵鉬為催化劑成長單壁奈米碳管...........................................14 第三章 研究方法與實驗步驟…………………………………………25 3-1 研究方法與目的………………………………………...............25 3-2 實驗方法………………………………………...........................25 3-2-1 試片準備………………………………………...............25 3-2-2 快速升降溫系統成長垂直式奈米碳管………...............26 3-2-3 探討水汽對垂直成長奈米碳管的影響………...............27 3-3 分析儀器………………………………………...........................27 3-3-1 掃描穿隧式電子顯微鏡………………...........................27 3-3-2 穿透式電子顯微鏡……………………...........................28 3-3-3 拉曼光譜儀……………………………...........................28 第四章 實驗結果與討論………………………………………............35 4-1 多壁奈米碳管陣列製程研究…………………….………..........35 4-2 單壁奈米碳管陣列製程研究………………...............................35 4-2-1 反應溫度對單壁奈米碳管陣列製程影響........................35 4-2-2 碳源流量對單壁奈米碳管陣列製程影響.......................37 4-2-3 鋁膜厚對單壁奈米碳管陣列製程影響...........................38 4-3 水汽對成長奈米碳管的影響…………………………...…........39 4-3-1 以熱力學原理計算水汽流量………………....................39 4-3-2 水汽影響的探討…………………………………...........40 第五章 結論……………………………………………………………82 第六章 參考文獻………………………………………………………84

    1. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56 (1991).
    2. Rice University: Rick Smalley’s Group Home Page Image Gallery.
    3. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes & Carbon Nanotubes, San Diego: Academic Press, (1996).
    4. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon 33, 883 (1995).
    5. N. Hanada, S.I. Sawada, A. Oshiyama, Phys Rev Lett., 68(1992), 1579.
    6. J.W. Minitmire, B.I. Dulap, C.T. White, Phys Rev Lett., 68(1992), 631.
    7. R. Saito, M. Fujita, G. Dresselhaus, “Phusical properties of carbon nanotubes,” Imperial College, (1998).
    8. R. Bruce Weisman, Sergei M. Bachilo, “Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspend: An Empirical Kataura Plot,” Nano Letters 3, 9 (2003).
    9. H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa,“Field emission from well-aligned, patterned carbon nanotube emitters,” Appl. Phys. Lett. 76, 1776 (2000).
    10. J.-M. Bonard, T. Stockli, O. Noury, A. Chatelain, “Field emission from cylindrical carbon nanotube cathodes: Possibilities for luminescent tubes,” Appl. Phys. Lett. 78, 2775 (2001).
    11. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J.E. Jung, N. S. Lee, G. S. Park and J. M. Kim, ‘‘Fully sealed, high-brightness carbon-nanotube field-emission display,’’ Appl. Phys. Lett., 75, 3129 (1999).
    12. Y. Saito, S. Uemura, “Field emission from carbon nanotubes and its application to electron sources,” Carbon 38, 169 (2000).
    13. M. Yumura, S. Ohshima, K. Uchida, Y. Tasaka, Y. Kuriki, F. Ikazaki, “Synthesis and purification of multi-walled carbon nanotubes for field emitter aplications,” Diam. Relat. Mater. 8, 785 (1999).
    14. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors,” Appl. Phys. Lett., 73, 2447 (1998).
    15. S. J. Tans, A. R. M. Verschueren, C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature 393 ,49 (1998).
    16. Z. Yao, H. W. C. Postma, L. Balents, C. Dekker, “Carbon nanotube intramolecular junctions,” Nature 402, 273 (1999).
    17. J. A. Misewish, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, J. Tersoff, “Electrically induced optical emission from a carbon nanotube FET,” Science 300, 783 (2003).
    18. A. C.Dillon, K.M. Jones, T. A.Bekkedahl, C. H.Kiang, D. S. Bethune, and M. J. Heben, ‘Storage of hydrogen in single-walled carbon nanotubes,” Nature, 386, 377(1997).
    19. S. Mi Lee and Y. Hee Lee, “Hydrogen storage in single walled carbon nanotubes,” Appl. Phys. Lett., 76 (20), 2877 (2000).
    20. Y. Chen, D. T. Shaw, X. D. Bai, E. G. Wang, C. Lund, W. M. Lu , “Hydrogen storage in aligned carbon nanotubes,” Appl. Phys. Lett.,78 ,2128 (2001).
    21. B. I. Yakobson and R. E. Smalley, “Fullerene nanotubes: C1,000,000 and beyond,” American Scientist, 85, 324 (1997).
    22. P. Calvert, “Strength in disunity,” Nature, 357, 356 (1992).
    23. L. Jin, C. Bower, and O.Zhou, “ Alignment of carbon nanotubes in a polymer matrix by mechanical stretching,” Appl. Phys. Lett., 73(9), 1197 (1998).
    24. M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, ‘‘Recent development of carbon materials for Li ion batteries,’’ Carbon, 38, 183 (2000).
    25. B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, O.Zhou, Chem. Phys. Lett., 307, 153, (1999).
    26. L. Valentini, I. Armentano, J. M. Kenny, C. Cantalini, L. Lozzi, S. Santucci, “Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films,” Appl. Phys. Lett. 82, 961 (2003).
    27. A. Modi, N. Koratkar, E. Lass, B. Wei, P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171 (2003).
    28. S. B. Sinnott, R. Andeews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, “Model of carbon nanotube growth through chemical vapor deposition,” Chem. Phys. Lett. 315, 25 (1999).
    29. C. J. Lee, J. park, “Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition,” Appl. Phys. Lett. 77, 3397 (2000).
    30. C. Bower, O. Zhou, W. Zhu, D. J. Werder, S. Jin, “Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition,” Appl. Phys. Lett. 77, 2767 (2000).
    31. Z. W. Pan, S. S. Xie, B. H. Chang, C. Y. Wang, L. Lu, W. Liu, “Very long carbon nanotubes,” Nature 394, 631 (1998).
    32. G. Eres, A. A. Puretzky, D. B. Geohegan, H. Cui, “In situ control of the catalyst efficiency in chemical vapor deposition of vertically aligned carbon nanotubes on predeposited metal catalyst films,” Appl. Phys. Lett. 84, 1759 (2004).
    33. D. B. Geohegan, A. A. puretzky, I. N. Ivanov, S. Jesse, G. Eres, “In situ growth rate measurements and length control during chemical vapor deposition of vertical aligned multiwall carbon nanotubes,” Appl. Phys. Lett. 83, 1851 (2003).
    34. J. Li, C. Papadopoulos, J. M. Xu, M. Moskovits, “Highly-ordered carbon nanotube arrays for electronics applications,” Appl. Phys. Lett. 75, 367 (1999).
    35. J. S. Suha, J. S. Lee, “Highly ordered two-dimensional carbon nanotube arrays,” Appl. Phys. Lett. 75, 2047 (1999).
    36. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science 282, 1105(1998).
    37. C. Bower, W. Zhu, S. Jin, O. Zhou, “Plasma-induced alignment of carbon nanotube,” Appl. Phys. Lett. 77, 830 (2000).
    38. Kenji Hata, Don N. Futaba, Kohei Mizuno, Tatsunori Namai, Motoo Yumura, Sumio Iijima, “Water assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes,"Science 306, 1362 (2004).
    39. Don N. Futaba, Kenji Hata, Takeo Yamada, Kohei Mizuno, Motoo Yumura, Sumio Iijima, “Kinetics of water-assisted Single-wall carbon nanotube Synthesis Revealed by a Time-Evolution Analysis,"Phys. Rev. Lett. 95, 056104 (2005).
    40. Don N. Futaba, Kenji Hata, Tatsunori Namai, Takeo Yamada, Kohei Mizuno, Yuhei Hayamizu, Motoo Yumura, Sumio Iijima, “84% Catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach,"J. Phys. Chem. B 8035, 110 (2006).
    41. Gangyu Zhang, David Mann, Li Zhang, Ali Javey, Yiming Li, Erhan Yenilmez, Qian Wang, James P. Mcvittie, Yoshio Nishi, James Gibbons, and Hongjie Dai, “Ultra-high-yeild growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen,” PANS 16141, 102 (2005).
    42. Yiming Li, David Mann, Marco Rolandi, Woong Kim, Ant Ural, Steven Hung, Ali Javey, Jien Cao, Dunwei Wang, Erhan Yenilmez, Qian Wang, James F. Gibbons, Yoshio Nishi, and Hongjie Dai, “Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enchanced CVD method,” Nano Letters 317, 4 (2004).
    43. Yoichi Murakami, Yuhei Miyauchi, Shohei Chiashi, Shigeo Maruyama, “Direct synthesis of high-quality single-wall carbon nanotubes on silicon and quartz substrates,” Chem. Phys. Lett. 49, 377 (2003).
    44. Shigeo Maruyama, Erik Einarsson, Yoichi Murakami, Tadao Edamura, “Growth process of vertically aligned single-wall carbon nanotubes,” Chem. Phys. Lett. 320, 403 (2005).
    45. Yoichi Murakami, Shohei Chiashi, Yuhei Miyauchi, Minghui Hu, Masaru Ogura, Tatsuya Okubo, Shigeo Maruyama, “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy,” Chem. Phys. Lett. 298, 385 (2004).
    46. R. Seidel, G. S. Duesberg, E. Unger, A. P. Graham, M. Liebau, F. Kreupl, “Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600℃ and a Simple Growth Model,” J. Phys. Chem. B 108, 1888 (2004).
    47. R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, R. K. Tsui, “Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst,” Nano Lett. 3, 731 (2003).
    48. J. E. Herrera, L. Balzano, A. Borgna, W. E. Alvarez, D. E. Resasco, “Relationship between the Structure/Composition of Co–Mo Catalysts and Their Ability to Produce Single-Walled Carbon Nanotubes by CO Disproportionation,” J. Catalysis, 204, 129 (2001).
    49. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus, “Structural (n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering,” Phys. Rev. Lett. 86, 1118 (2001).
    50. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes”, Carbon 2043, 40 (2002).
    51. Introduction to Metallurgical Thermodynamics, 2nd Edition by David R. Gaskell.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE