簡易檢索 / 詳目顯示

研究生: 張東英
Chang, Tung-Ying
論文名稱: Effects of surface roughness on transport properties of Dirac Fermions on Topological insulators
指導教授: 牟中瑜
Mou, Chung-Yu
口試委員: 張明哲
Chang, Ming-Che
朱仲夏
Chu, Chon-Saar
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 41
中文關鍵詞: 表面粗糙程度狄拉克費米子自旋連接渦流拓撲絕緣體
外文關鍵詞: surface roughness, Dirac fermions, spin-connection, vortices, Topological insulators
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拓撲絕緣體(Topological insulators)的發現為架構二維電子系統開闢了一條新的路徑。這些二維電子系統駐留在三維拓撲絕緣體的表面,而且已知它們對於非磁性的干擾有很強的抵抗性。在實驗上已知生長三維拓撲絕緣體的表面並非平坦,而是由類似粗糙的梯田所組成。在這裡,我們探討表面粗糙程度(surface roughness)對三維拓撲絕緣體的傳遞性質之影響。表面粗糙程度引起的「自旋連接」(spin-connection)修正了狄拉克費米子(Dirac fermions)。透過考慮表面粗糙程度的過渡階段,我們構造了由粗糙程度引起的渦流(vortices)結構之有效哈密頓量。通過有效哈密頓量(effective Hamiltonian),我們可以找到散射截面(scattering cross section)和相應的電導率(conductivity)。我們的分析指出即使在粗超的階段,狄拉克費米子的電導率仍然是類似於平坦的表面。粗糙程度引起的狄拉克費米子在三維拓撲絕緣體的表面傳遞之特性是溫和的變化。


    The discovery of topological insulators (TIs) has pointed out a new route to construct two dimensional electronic systems. These two dimensional electronic systems reside on surfaces of 3D TIs and are known to be robust against non-magnetic perturbations. Experimentally, however, it is known that surfaces of grown 3D TIs are not flat and are composed of rough terraces. Here we investigate effects of surface roughness on transport properties of three dimensional topological insulators. It is shown that surface roughness induces spin connection correction to Dirac fermions. By considering surface roughness in the roughnening phase, we construct effective Hamiltonian due to vortices configuration of roughness. Through the effective Hamiltonian, we find the scattering cross section and the corresponding conductivity. Our analyses indicate that even in the rough phase, the conductivity of Dirac fermions still resemble that of flat surfaces. The roughness induces mild change on transport properties of Dirac fermions on surfaces of 3D TIs.

    1 Introduction 1 2 Methods 5 2.1 Review of previous work . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Basic formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 The eective Hamiltonian in a Dirac form . . . . . . . . . . . . . . 14 2.4 To nd dierential cross section for scattering by vortices . . . . . . 18 2.5 Scattering cross section, lifetime, and conductivity . . . . . . . . . . 22 3 Numerical results and discussion 28 4 Conclusion 34 Bibliography 34

    [1] A. A. ABRIKOSOV. Fermion states on the sphere s2. International Journal
    of Modern Physics A, 17(06n07):885889, 2002.
    [2] Vadim M. Apalkov and Tapash Chakraborty. The fractional quantum hall
    eect of tachyons in a topological insulator junction. EPL (Europhysics Let-
    ters), 100(6):67008, 2012.
    [3] Vadim M. Apalkov and Tapash Chakraborty. Superluminal tachyon-like excitations
    of dirac fermions in a topological insulator junction. EPL (Europhysics
    Letters), 100(1):17002, 2012.
    [4] David R. Nelson B. I. Halperin. Resistive transition in superconducting lms.
    Journal of Low Temperature Physics, Volume 36(Issue 5-6):pp 599616, 1979-
    09-01.
    [5] J. H. Bardarson, P. W. Brouwer, and J. E. Moore. Aharonov-bohm oscillations
    in disordered topological insulator nanowires. Phys. Rev. Lett., 105:156803,
    Oct 2010.
    [6] Dimitrie Culcer, E. H. Hwang, Tudor D. Stanescu, and S. Das Sarma. Twodimensional
    surface charge transport in topological insulators. Phys. Rev. B,
    82:155457, Oct 2010.
    [7] Xian-Qi Dai, Bao Zhao, Jian-Hua Zhao, Yan-Hui Li, Ya-Nan Tang, and Ning
    Li. Robust surface state of intrinsic topological insulator bi 2 te 2 se thin lms:
    a rst-principles study. Journal of Physics: Condensed Matter, 24(3):035502,
    2012.
    [8] Shi-Hai Dong, Xi-Wen Hou, and Zhong-Qi Ma. Relativistic levinson theorem
    in two dimensions. Phys. Rev. A, 58:21602167, Sep 1998.
    [9] R. Egger, A. Zazunov, and A. Levy Yeyati. Helical luttinger liquid in topological
    insulator nanowires. Phys. Rev. Lett., 105:136403, Sep 2010.
    [10] Liang Fu, C. L. Kane, and E. J. Mele. Topological insulators in three dimensions.
    Phys. Rev. Lett., 98:106803, Mar 2007.
    [11] M. Z. Hasan and C. L. Kane. Colloquium. Rev. Mod. Phys., 82:30453067,
    Nov 2010.
    [12] Yasuhiro Hatsugai. Chern number and edge states in the integer quantum
    hall eect. Phys. Rev. Lett., 71:36973700, Nov 1993.
    [13] Thakshila M Herath, Prabath Hewageegana, and Vadym Apalkov. A quantum
    dot in topological insulator nanolm. Journal of Physics: Condensed Matter,
    26(11):115302, 2014.
    [14] Bor-Luen Huang, Ming-Che Chang, and Chung-Yu Mou. Persistent currents
    in a graphene ring with armchair edges. Journal of Physics: Condensed Mat-
    ter, 24(24):245304, 2012.
    [15] Ken-Ichiro Imura, Mayuko Okamoto, Yukinori Yoshimura, Yositake Takane,
    and Tomi Ohtsuki. Finite-size energy gap in weak and strong topological
    insulators. Phys. Rev. B, 86:245436, Dec 2012.
    [16] Ken-Ichiro Imura and Yositake Takane. Protection of the surface states in
    topological insulators: Berry phase perspective. Phys. Rev. B, 87:205409,
    May 2013.
    [17] Ken-Ichiro Imura, Yositake Takane, and Akihiro Tanaka. Spin berry phase in
    anisotropic topological insulators. Phys. Rev. B, 84:195406, Nov 2011.
    [18] Ken-Ichiro Imura, Yukinori Yoshimura, Yositake Takane, and Takahiro Fukui.
    Spherical topological insulator. Phys. Rev. B, 86:235119, Dec 2012.
    [19] Andrii Iurov, Godfrey Gumbs, Oleksiy Roslyak, and Danhong Huang. Photon
    dressed electronic states in topological insulators: tunneling and conductance.
    Journal of Physics: Condensed Matter, 25(13):135502, 2013.
    [20] Dung-Hai Lee. Surface states of topological insulators: The dirac fermion in
    curved two-dimensional spaces. Phys. Rev. Lett., 103:196804, Nov 2009.
    [21] Sheng Li, Li Hui-Chao, Yang Yun-You, Sheng Dong-Ning, and Xing Ding-Yu.
    Spin chern numbers and time-reversal-symmetry-broken quantum spin hall
    eect. Chinese Physics B, 22(6):067201, 2013.
    [22] Chao-Xing Liu, Xiao-Liang Qi, HaiJun Zhang, Xi Dai, Zhong Fang, and Shou-
    Cheng Zhang. Model hamiltonian for topological insulators. Phys. Rev. B,
    82:045122, Jul 2010.
    [23] Feng Lu, Yuan Zhou, Jin An, and Chang-De Gong. Transversal propagation of
    helical edge states in quantum spin hall systems. EPL (Europhysics Letters),
    98(1):17004, 2012.
    [24] Jie Lu, Wen-Yu Shan, Hai-Zhou Lu, and Shun-Qing Shen. Non-magnetic
    impurities and in-gap bound states in topological insulators. New Journal of
    Physics, 13(10):103016, 2011.
    [25] Amal Medhi and Vijay B Shenoy. Continuum theory of edge states of topological
    insulators: variational principle and boundary conditions. Journal of
    Physics: Condensed Matter, 24(35):355001, 2012.
    [26] J. E. Moore and L. Balents. Topological invariants of time-reversal-invariant
    band structures. Phys. Rev. B, 75:121306, Mar 2007.
    [27] Akinori Nishide, Alexey A. Taskin, Yasuo Takeichi, Taichi Okuda, Akito
    Kakizaki, Toru Hirahara, Kan Nakatsuji, Fumio Komori, Yoichi Ando, and
    Iwao Matsuda. Direct mapping of the spin-ltered surface bands of a threedimensional
    quantum spin hall insulator. Phys. Rev. B, 81:041309, Jan 2010.
    [28] Tomi Paananen, Henning Gerber, Matthias GA{tte, and Thomas Dahm. Appearance
    of at surface bands in three-dimensional topological insulators in a
    ferromagnetic exchange eld. New Journal of Physics, 16(3):033019, 2014.
    [29] V. Parente, P. Lucignano, P. Vitale, A. Tagliacozzo, and F. Guinea. Spin
    connection and boundary states in a topological insulator. Phys. Rev. B,
    83:075424, Feb 2011.
    [30] Kyungwha Park, Christophe De Beule, and Bart Partoens. The ageing eect
    in topological insulators: evolution of the surface electronic structure of bi 2
    se 3 upon k adsorption. New Journal of Physics, 15(11):113031, 2013.
    [31] Arnaud Raoux, Marco Polini, Reza Asgari, A. R. Hamilton, Rosario Fazio,
    and A. H. MacDonald. Velocity-modulation control of electron-wave propagation
    in graphene. Phys. Rev. B, 81:073407, Feb 2010.
    [32] Rahul Roy. Topological phases and the quantum spin hall eect in three
    dimensions. Phys. Rev. B, 79:195322, May 2009.
    [33] SHUN-QING SHEN, WEN-YU SHAN, and HAI-ZHOU LU. Topological insulator
    and the dirac equation. SPIN, 01(01):3344, 2011.
    [34] Nguyen?Hong Shon and Tsuneya Ando. Quantum transport in twodimensional
    graphite system. Journal of the Physical Society of Japan,
    67(7):24212429, 1998.
    [35] Ryuji Takahashi and Shuichi Murakami. Gapless interface states between
    topological insulators with opposite dirac velocities. Phys. Rev. Lett.,
    107:166805, Oct 2011.
    [36] Yositake Takane and Ken-Ichiro Imura. Dirac electrons on a sharply edged
    surface of topological insulators. Journal of the Physical Society of Japan,
    81(9):093705, 2012.
    [37] Yositake Takane and Ken-Ichiro Imura. Unied description of dirac electrons
    on a curved surface of topological insulators. Journal of the Physical Society
    of Japan, 82(7):074712, 2013.
    [38] Binghai Yan and Shou-Cheng Zhang. Topological materials. Reports on
    Progress in Physics, 75(9):096501, 2012.
    [39] Jr-Yu Yeh, Ming-Che Chang, and Chung-Yu Mou. Electron scattering from
    a mesoscopic disk in a rashba system. Phys. Rev. B, 73:035313, Jan 2006.
    [40] Liu Yi-Man, Shao Huai-Hua, Zhou Xiao-Ying, and Zhou Guang-Hui. Conned
    states and spin polarization on a topological insulator thin lm modulated by
    an electric potential. Chinese Physics B, 22(7):077310, 2013.
    [41] Yukinori Yoshimura, Akihiko Matsumoto, Yositake Takane, and Ken-Ichiro
    Imura. Perfectly conducting channel on the dark surface of weak topological
    insulators. Phys. Rev. B, 88:045408, Jul 2013.
    [42] Yan-Yang Zhang, Xiang-Rong Wang, and X C Xie. Three-dimensional topological
    insulator in a magnetic eld: chiral side surface states and quantized
    hall conductance. Journal of Physics: Condensed Matter, 24(1):015004, 2012.
    [43] Yi Zhang, Ying Ran, and Ashvin Vishwanath. Topological insulators in three
    dimensions from spontaneous symmetry breaking. Phys. Rev. B, 79:245331,
    Jun 2009.
    [44] Yi Zhang and Ashvin Vishwanath. Anomalous aharonov-bohm conductance
    oscillations from topological insulator surface states. Phys. Rev. Lett.,
    105:206601, Nov 2010.
    [45] Cheng Zhi and Zhou Bin. Finite size eects on helical edge states in hgte quantum
    wells with the spin orbit coupling due to bulk- and structure-inversion
    asymmetries. Chinese Physics B, 23(3):037304, 2014.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE