研究生: |
高膺閔 Kao, Ying-Min |
---|---|
論文名稱: |
銅銦鎵硒薄膜型太陽能模組及傳統屋瓦數值模型建立及溫度分布研究 CIGS thin-film solar modules and traditional tiles numerical model and temperature distribution |
指導教授: |
陳玉彬
Chen, Yu-Bin |
口試委員: |
郭長信
Kuo, Chang-Hsin 施威宏 Shih, Wei-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 銅銦鎵硒 、太陽能屋瓦 、熱輻射 、熱傳 、光電效應 |
外文關鍵詞: | copper indium gallium selenide, solar roof tiles, heat radiation, heat transfer, photoelectric effect |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在綠色能源崛起的現代,太陽能因為太陽這一穩定的能量來源扮演著重要的角色。銅銦鎵硒(CuInGaSe2)太陽能電池為薄膜型太陽能電池,可製作於可撓性基板上,因此有著廣泛的應用領域,近年更是製作成太陽能屋瓦作為建材來使用,有著美觀的外型及發電的經濟效益。然而,將傳統屋瓦更換成太陽能屋瓦後,若造成室內溫度上升產生多餘的耗能則得不償失,為了瞭解CIGS太陽能屋瓦與傳統屋瓦的溫度差異,首先,建立輻射性質計算模型,計算太陽能屋瓦各材料的吸收率頻譜及生熱量,並針對各層生熱量提出改善建議;接著是建立溫度計算數值模型,將各材料的生熱量及邊界條件帶入數值模型當中,計算屋瓦的溫度曲線;最後搭建實驗平台,量測太陽能屋瓦及傳統屋瓦溫度,並比較兩種屋瓦的溫度差異,以及提出太陽能屋瓦的改善建議。
In the modern era of the rise of green energy, solar energy plays an important role because of the stable energy source of the sun. Copper indium gallium selenide (CuInGaSe2) solar cells are thin-film solar cells that can be fabricated on flexible substrates, so they have a wide range of applications. In recent years, they have been fabricated into solar roof tiles for use as building materials. It has beautiful appearance and economic benefits of power generation. However, after replacing traditional roof tiles with solar roof tiles, the excess energy consumption caused by the increase in indoor temperature will not be worth the loss. To understand the temperature difference between CIGS solar roof tiles and traditional roof tiles, first, establish a radiation property calculation model to calculate the absorption spectrum and heat generation of each material of the solar tile, and suggestions for improving the heat generation of each layer; then the establishment of a temperature calculation numerical model, the heat generation of each material and boundary conditions are input to the numerical model, and the temperature curve of the tiles are calculated ; Finally, an experimental platform was built to measure the temperature of solar tiles and traditional tiles, and compare the temperature differences between the two tiles, and put forward suggestions for improvement of solar tiles.
[1] S. Fonash, Solar cell device physics: Elsevier, 2012.
[2] S. Chander, A. Purohit, A. Sharma, S. Nehra, and M. Dhaka, "A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature," Energy Reports, vol. 1, pp. 104-109, 2015.
[3] E. Radziemska, "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable energy, vol. 28, pp. 1-12, 2003.
[4] P. Singh and N. M. Ravindra, "Temperature dependence of solar cell performance—an analysis," Solar energy materials and solar cells, vol. 101, pp. 36-45, 2012.
[5] 方翊翔, "改變封裝層與背板材料對多晶矽太陽能模組性能之實驗與數值分析," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2012.
[6] K. Shimazaki, M. Imaizumi, and K. Kibe, "SiO2 and Al2O3/SiO2 coatings for increasing emissivity of Cu (In, Ga) Se2 thin-film solar cells for space applications," Thin Solid Films, vol. 516, pp. 2218-2224, 2008.
[7] A. Virtuani, D. Pavanello, and G. Friesen, "Overview of temperature coefficients of different thin film photovoltaic technologies," in 25th European photovoltaic solar energy conference and exhibition/5th World conference on photovoltaic energy conversion, 2010, pp. 6-10.
[8] R. A. Agathokleous and S. A. Kalogirou, "Double skin facades (DSF) and building integrated photovoltaics (BIPV): A review of configurations and heat transfer characteristics," Renewable Energy, vol. 89, pp. 743-756, 2016.
[9] M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, M. Yoshita, and A. W. Ho‐Baillie, "Solar cell efficiency tables (version 54)," Progress in photovoltaics: research and applications, vol. 27, pp. 565-575, 2019.
[10] H. Gholami, H. N. Røstvik, and D. Müller-Eie, "Holistic economic analysis of building integrated photovoltaics (BIPV) system: Case studies evaluation," Energy and Buildings, vol. 203, p. 109461, 2019.
[11] G. P. Hammond, H. A. Harajli, C. I. Jones, and A. B. Winnett, "Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations," Energy Policy, vol. 40, pp. 219-230, 2012.
[12] A. M. Shirazi, Z. S. Zomorodian, and M. Tahsildoost, "Techno-economic BIPV evaluation method in urban areas," Renewable Energy, vol. 143, pp. 1235-1246, 2019.
[13] W. Wang, Y. Liu, X. Wu, Y. Xu, W. Yu, C. Zhao, et al., "Environmental assessments and economic performance of BAPV and BIPV systems in Shanghai," Energy and Buildings, vol. 130, pp. 98-106, 2016.
[14] Z. M. Zhang, Nano/microscale heat transfer: Springer, 2007.
[15] T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of heat and mass transfer: John Wiley & Sons, 2011.
[16] R. N. Bhattacharya, M. A. Contreras, and G. Teeter, "18.5% copper indium gallium diselenide (CIGS) device using single-layer, chemical-bath-deposited ZnS (O, OH)," Japanese journal of applied physics, vol. 43, p. L1475, 2004.
[17] F. Mollica, "Optimization of ultra-thin Cu (In, Ga) Se2 based solar cells with alternative back-contacts," 2016.
[18] J. Ramanujam and U. P. Singh, "Copper indium gallium selenide based solar cells–a review," Energy & Environmental Science, vol. 10, pp. 1306-1319, 2017.
[19] R. Sundaramoorthy, F. Pern, C. DeHart, T. Gennett, F. Meng, M. Contreras, et al., "Stability of TCO window layers for thin-film CIGS solar cells upon damp heat exposures: part II," in Reliability of Photovoltaic Cells, Modules, Components, and Systems II, 2009, p. 74120J.
[20] 唐瑋鍾, 林偉聖, 張仁銓, 謝東坡, and 張茂男, "掃描電位顯微鏡於銅銦鎵硒薄膜分析之應用," 科儀新知, pp. 57-65, 2014.
[21] Y.-C. Wang, B.-Y. Lin, P.-T. Liu, and H.-P. D. Shieh, "Photovoltaic electrical properties of aqueous grown ZnO antireflective nanostructure on Cu (In, Ga) Se 2 thin film solar cells," Optics Express, vol. 22, pp. A13-A20, 2014.
[22] PVEDUCATION.ORG. Standar Solar Spectra. Available: https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra
[23] M. KffiiLLOVA, L. Nomerovannaya, and M. Noskov, "Optical properties of molybdenum single crystals," Soviet Physics JETP, vol. 33, 1971.
[24] S. Kim, H. Yoon, S.-O. Kim, and J.-Y. Leem, "Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method," Optical Materials, vol. 35, pp. 2418-2424, 2013.
[25] Q. H. Li, D. Zhu, W. Liu, Y. Liu, and X. C. Ma, "Optical properties of Al-doped ZnO thin films by ellipsometry," Applied surface science, vol. 254, pp. 2922-2926, 2008.
[26] P. D. Paulson, R. Birkmire, and W. Shafarman, "Optical characterization of CuIn 1− x Ga x Se 2 alloy thin films by spectroscopic ellipsometry," Journal of Applied Physics, vol. 94, pp. 879-888, 2003.
[27] M. R. Querry, "Optical constants," MISSOURI UNIV-KANSAS CITY1985.
[28] M. R. Querry, Optical constants of minerals and other materials from the millimeter to the ultraviolet: Chemical Research, Development & Engineering Center, US Army Armament …, 1987.
[29] M. Rubin, "Optical properties of soda lime silica glasses," Solar energy materials, vol. 12, pp. 275-288, 1985.
[30] M. R. Vogt, H. Holst, H. Schulte-Huxel, S. Blankemeyer, R. Witteck, D. Hinken, et al., "Optical constants of UV transparent EVA and the impact on the PV module output power under realistic irradiation," Energy Procedia, vol. 92, pp. 523-530, 2016.
[31] O. Cojocaru-Mirédin, P. Choi, R. Wuerz, and D. Raabe, "Exploring the pn junction region in Cu (In, Ga) Se2 thin-film solar cells at the nanometer-scale," Applied Physics Letters, vol. 101, p. 181603, 2012.
[32] S. H. Liu, E. J. Simburger, J. Matsumoto, A. Garcia III, J. Ross, and J. Nocerino, "Evaluation of thin‐film solar cell temperature coefficients for space applications," Progress in Photovoltaics: Research and Applications, vol. 13, pp. 149-156, 2005.