研究生: |
王維廉 Wang, Wei-Lian |
---|---|
論文名稱: |
On the existence of positive periodic solutions for a class of diRerential delay equations. |
指導教授: | 黃明傑 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 11 |
中文關鍵詞: | 正週期解 、延遲方程 |
外文關鍵詞: | positive periodic solutions, diRerential delay equations |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
We prove the existence of positive periodic solutions for a class of
diRerential delay equations. The method is based on Hilbert's pro-
jective metric, contraction mapping principle and theory of p-concave
operators.
[1] P. J. Bushell, `Hilbert's metric and positive contraction mappings in a
Banach space', Archive for Rational Mechanics and Analysis, 52(1973),
330-338.
[2] P. J. Nushell, `The Cayley-Hilbert metric and positive operators', Linear
Algebra and its Applications, 84(1986), 271-280.
[3] S-S. Cheng and G. Zhang, `Existence of positive periodic solutions for
non-autonomous functional diRerential equations', Journal of DiReren-
tial Equations, 59(2001), 202-211.
[4] M-J. Huang and D-Y. Chen, `Existence and uniqueness of positive pe-
riodic solutions for a class of diRerential delay equations', Journal of
Mathematics of Kyoto University, 47-4(2007), 849-857.
[5] M-J. Huang, C-Y. Huang, and T-M. Tsai, `Applications of Hilbert's pro-
jective metric to a class of positive nonlinear operators', Linear Algebra
and its Applications, 413(2006), 202-211.
[6] M. A. Krasnoselskii, Positive Solutions of Operator Equations, 1964.
[7] X-L. Liu and W-T. Li, `Existence and uniqueness of positve periodic
solutions of functional diRerential equations', Journal of Mathematical
Analysis and Applications, 293(2004), 28-39.
[8] Roger D. Nussbaum, `Hilbert's projective metric and iterated nonlinear
maps', Memoirs of the American Mathematical Society, 75(1988), 1-133.
[9] A. J. B. Potter, `Applications of Hilbert's projective metric to certain
classes of non-homogeneous operators', Quarterly of Applied Mathemat-
ics (Oxford Series) (2), 28(1977), 93-99.
[10] H. Wang, `Positive periodic solutions of functional diRerential equa-
tions', Journal of DiRerential Equations, 202(2004), 354-366.