簡易檢索 / 詳目顯示

研究生: 王維廉
Wang, Wei-Lian
論文名稱: On the existence of positive periodic solutions for a class of diRerential delay equations.
指導教授: 黃明傑
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 11
中文關鍵詞: 正週期解延遲方程
外文關鍵詞: positive periodic solutions, diRerential delay equations
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We prove the existence of positive periodic solutions for a class of
    diRerential delay equations. The method is based on Hilbert's pro-
    jective metric, contraction mapping principle and theory of p-concave
    operators.


    1 Introduction 1 2 Projective metric 2 3 Preliminaries 4 4 Main results 6

    [1] P. J. Bushell, `Hilbert's metric and positive contraction mappings in a
    Banach space', Archive for Rational Mechanics and Analysis, 52(1973),
    330-338.
    [2] P. J. Nushell, `The Cayley-Hilbert metric and positive operators', Linear
    Algebra and its Applications, 84(1986), 271-280.
    [3] S-S. Cheng and G. Zhang, `Existence of positive periodic solutions for
    non-autonomous functional diRerential equations', Journal of DiReren-
    tial Equations, 59(2001), 202-211.
    [4] M-J. Huang and D-Y. Chen, `Existence and uniqueness of positive pe-
    riodic solutions for a class of diRerential delay equations', Journal of
    Mathematics of Kyoto University, 47-4(2007), 849-857.
    [5] M-J. Huang, C-Y. Huang, and T-M. Tsai, `Applications of Hilbert's pro-
    jective metric to a class of positive nonlinear operators', Linear Algebra
    and its Applications, 413(2006), 202-211.
    [6] M. A. Krasnoselskii, Positive Solutions of Operator Equations, 1964.
    [7] X-L. Liu and W-T. Li, `Existence and uniqueness of positve periodic
    solutions of functional diRerential equations', Journal of Mathematical
    Analysis and Applications, 293(2004), 28-39.
    [8] Roger D. Nussbaum, `Hilbert's projective metric and iterated nonlinear
    maps', Memoirs of the American Mathematical Society, 75(1988), 1-133.
    [9] A. J. B. Potter, `Applications of Hilbert's projective metric to certain
    classes of non-homogeneous operators', Quarterly of Applied Mathemat-
    ics (Oxford Series) (2), 28(1977), 93-99.
    [10] H. Wang, `Positive periodic solutions of functional diRerential equa-
    tions', Journal of DiRerential Equations, 202(2004), 354-366.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE