研究生: |
楊子毅 Yang, Zi-Yi |
---|---|
論文名稱: |
新版宇宙射線飛航劑量評估程式的開發與應用 Development and Applications of the New NTHU Flight Dose Calculator |
指導教授: |
許榮鈞
Sheu, Rong-Jiun |
口試委員: |
江祥輝
Jiang, Shiang-Huei 張似瑮 Chang, Szu-Li 洪明崎 Horng, Ming-Chi 劉鴻鳴 Liu, Hong-Ming |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 646 |
中文關鍵詞: | 蒙地卡羅模擬 、宇宙射線 、飛航劑量 、累積能譜 、人員集體與平均劑量 |
外文關鍵詞: | Monte Carlo simulation, Cosmic ray, Flight dose, Cumulative spectra, Collective and average effective dose |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究大幅更新NTHU飛航劑量評估程式與其資料庫,引入三個全新的功能:(1)多航線自動批次處理、(2)表列所有航班的總劑量評估、以及(3)沿著飛行路線的累積能譜計算,可廣泛用於探討宇宙射線與飛航劑量相關的重要課題。本研究使用FLUKA模擬銀河宇宙射線與大氣層的作用,計算中子、質子、渺子、介子、電子、正子、光子,以及各種重粒子從海平面到70 km高空的劑量率及能譜,考慮高度、太陽活度與地球磁場的影響並建構一完整大氣層網格之輻射資料庫。據此,透過一系列內外插及線積分可快速評估任一航線的劑量及累積能譜。NTHU飛航劑量評估程式的可靠度已透過與文獻中多樣計算或測量結果的比較獲得驗證。
基於更新版NTHU飛航劑量評估程式的新功能,本研究展示如下四個重要的應用:(1)針對11條台灣重要航線,透過批次處理功能分析1100條實際飛航路線數據,探討飛航路線差異的效應、比較實際與大圓航線的差異、以及不同太陽活度的影響。(2)展現累積能譜可能的應用,除了不同劑量單位轉換之外,亦可應用於飛航測量實驗設計以及偵檢器響應分析,或是評估宇宙射線對於飛機電子元件的單粒子翻轉效應。(3)針對台灣最長國際航線,考量其2017整年所有航線的劑量結果進行深度的統計分析,引進散佈圖與相關係數來量化評估各項與劑量相關參數之間的關係。(4)根據公開的民航年報,透過表列所有航班總劑量評估的功能,提出一套全面並可靠的機師年平均劑量計算的模式;以華航與長榮兩家航空公司為例,本研究計算了2006到2018年機師的年集體及平均有效劑量,並引進迴歸分析評估其變化的原因與趨勢,相關結果未來可應用於台灣飛行人員輻射劑量的評估與管制。
This study presents important updates of the NTHU Flight Dose Calculator, which not only extends its capabilities but also introduces three new features: the automatic batch analysis of multiple flights, route dose summation over all scheduled flights, and estimation of the cumulative spectra of cosmic rays along a flight path. Based on the results of extensive and high-fidelity FLUKA simulations of atmospheric showers generated by galactic cosmic rays, a global database containing effective dose rates and energy spectra of neutrons, protons, muons, pions, electrons, positrons, photons, and heavy ions at various altitudes ranging from sea level up to 70 km was constructed and parameterized accounting for the dependences of altitude, geomagnetic cutoff rigidity, and solar modulation. The aviation route doses and cumulative spectra of various radiation components can be estimated by performing a series of interpolations and integration along a path. The calculator has been benchmarked by comparing with various results in the literature.
The new features of the NTHU Flight Dose Calculator were demonstrated through the following applications: (1) Conduct a systematic dose assessment for 11 popular flights from Taiwan, with an emphasis on the effects of flight route variation and great-circle approximation. (2) Show three potentially useful applications for cumulative spectra: as an alternative approach to estimate the route dose; correcting onboard neutron detector responses caused by unwanted components in cosmic rays; and estimating single-event upset in avionics. (3) Perform an in-depth analysis of aviation route doses for the longest distance flight from Taiwan. In addition, dose relationships with influenctial parameters were identified using correlation coefficients and scatterplots. (4) Propose a feasible and comprehensive approach for estimating collective and average effective doses of galactic cosmic radiation received by pilots on the basis of data in publicly available civil aviation annual statistical reports. The assessment of the annual effective doses received by pilots in Taiwan from 2006 to 2018 was performed. A regression model that can effectively reproduce the derived average effective dose rates on board aircraft was obtained for future application in aircrew dosimetry.
[1] V. F. Hess, "Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten," Physik Zeitschr vol. 23, pp. 1084-1091, 1912.
[2] Victor Franz Hess Biographical: https://www.nobelprize.org/prizes/physics/1936/hess/biographical/ (2019/09).
[3] ICRP, "Radiological protection from cosmic radiation in aviation. ICRP Publication 132," Ann. ICRP, vol. 45, 2016.
[4] Wikipedia, Cosmic ray: https://en.wikipedia.org/wiki/Cosmic_ray (2019/09).
[5] K. O'Brien, W. Friedberg, H. H. Sauer, and D. F. Smart, "Atmospheric cosmic rays and solar energetic particles at aircraft altitudes," Environment International, vol. 22, pp. 9-44, 1996.
[6] J. A. Simpson, "Elemental and Isotopic Composition of the Galactic Cosmic Rays," Ann. Rev. Nucl. Part. Sci., vol. 33, pp. 323-381, 1983.
[7] T. K. Gaisser, R. Engel, and E. Rescon, Cosmic Rays and Particle Physics Cambridge, UK: Cambridge University Press, 1990.
[8] D. T. Bartlett, "Radiation protection aspects of the cosmic radiation exposure of aircraft crew," Radiat. Prot. Dosimetry, vol. 109, pp. 349-355, 2004.
[9] L. Anchordoqui, T. Paul, S. Reucroft, and J. Swain, "Ultrahigh Energy Cosmic Rays: The state of the art before the Auger Observatory," International Journal of Modern Physics A, vol. 18, pp. 2229-2366, 2003.
[10] ICRU, "Reference Data for the Validation of Doses from Cosmic-Radiation Exposure of Aircraft Crew, ICRU Report 84," Journal of the ICRU, vol. 10, 2010.
[11] National Synchrotron Radiation Research Center (NSRRC)-Taiwan Photon Source (TPS): https://www.nsrrc.org.tw/chinese/tps.aspx (2019/09).
[12] F. Spurny, "Radiation doses at high altitudes and during space flights," Radiat. Phys. Chem., vol. 61, pp. 301-307, 2001.
[13] C. M. S. Cohen and R. A. Mewaldt, "The Ground‐Level Enhancement Event of September 2017 and Other Large Solar Energetic Particle Events of Cycle 24," Space Weather, vol. 16, pp. 1616-1623, 2017.
[14] NOAA Space Environment Services Center, Solar Proton Events from 1976 to present: https://umbra.nascom.nasa.gov/SEP/ (2019/10).
[15] P. Lantos and N. Fuller, "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," Radiat. Prot. Dosimetry, vol. 104, pp. 199-210, 2003.
[16] L. I. Dorman, "Chapter 30 - Space weather and cosmic ray effects," Climate Change (2nd ed), 2016.
[17] S. E. Forbush, "On the Effects in Cosmic-Ray Intensity Observed During the Recent Magnetic Storm," Phys. Rev. , vol. 51, p. 1108, 1937.
[18] W. Friedberg, K. Copeland, F. E. Duke, K. O’Brien, and E. B. Darden, "Radiation exposure during air travel guidance provided by the Federal Aviation Administration for air carrier crews," Health Phys., vol. 79, pp. 591-595, 2000.
[19] 陳韋霖, "建築物內宇宙射線牟子與中子的研究," 國立清華大學, 博士論文, 2018.
[20] D. A. Schauer and O. W. Linton, "NCRP Report No. 160, Ionizing Radiation Exposure of the Population of the United States, medical exposure--are we doing less with more, and is there a role for health physicists?," Health Phys., vol. 97, 2009.
[21] G. Desmaris, "Cosmic radiation in aviation: radiological protection of Air France aircraft crew," Ann. ICRP, vol. 45(1_suppl), pp. 64-74, 2016.
[22] M. S. Potgieter, "Solar Modulation of Cosmic Rays," Living Rev. Solar Phys., vol. 10, 2013.
[23] European Commission, “Cosmic radiation exposure of aircraft crew.” Compilation of measured and calculated data. Final report of EURADOS WG5 to the Group of Experts established under Article 31 of the Euratom Treaty. Radiation Protection 140. Luxembourg, European Commission, 2004.
[24] Wikipedia, Wolf number: https://en.wikipedia.org/wiki/Wolf_number (2019/12).
[25] H. Schwabe, "Solar Observations During 1843," Astronomische Nachrichten, vol. 20, p. 495, 1843.
[26] Bartol Neutron Monitor: http://neutronm.bartol.udel.edu/ (2019/09).
[27] Anthony Watts, Evidence of a Cycle 25 sunspot found: https://wattsupwiththat.com/2018/04/12/it-appears-solar-cycle-25-has-begun-solar-cyle-24-one-of-the-shortest-and-weakest-ever/ (2019/09).
[28] K. O'Brien and G. P. Burke, "Calculated cosmic ray neutron monitor response to solar modulation of galactic cosmic rays," J. Geophys. Res., vol. 78, pp. 3013-3019, 1973.
[29] Federal Aviation Administration, Heliocentric Potential: https://www.faa.gov/data_research/research/med_humanfacs/aeromedical/radiobiology/heliocentric/ (2019/10).
[30] Climax Neutron Monitor: http://cr0.izmiran.ru/clmx/main.htm (2019/10).
[31] B. J. Lewis, L. G. I. Bennett, A. R. Green, M. J. McCall, B. Ellaschuk, A. Butler, et al., "Galactic and solar radiation exposure to aircrew during a solar cycle," Radiat. Prot. Dosimetry, vol. 102, pp. 207-227, 2002.
[32] World Magnetic Model - Model Limitations: www.ngdc.noaa.gov (2020/03).
[33] Wikipedia, Earth's magnetic field: https://en.wikipedia.org/wiki/Earth%27s_magnetic_field (2019/09).
[34] Wikipedia, Van Allen radiation belt: https://en.wikipedia.org/wiki/Van_Allen_radiation_belt (2020/2).
[35] SPENVIS: https://www.spenvis.oma.be/ (2019/09).
[36] D. F. Smart, M. A. Shea, and E. O. Fluckiger, "Magnetospheric models and trajectory computations," Space Sci. Rev., vol. 93, pp. 305-333, 2000.
[37] D. F. Smart and M. A. Shea, "A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft," Adv. Space Res., vol. 36, pp. 2012-2020, 2005.
[38] M. Mandea and S. Macmillan, "International Geomagnetic Reference Field—the eighth generation," Earth Planets Space,, vol. 52, pp. 1119-1124, 2000.
[39] K. O'Brien, "Editorial-Limitations of the Use of the Vertical Cut-off to Calculate Cosmic-ray Propagation in the Earth's Atmosphere," Radiat. Prot. Dosimetry, vol. 128, pp. 259-260, 2008.
[40] K. O'Brien, "Erratum-Limitations of the Use of the Vertical Cut-off to Calculate Cosmic-ray Propagation in the Earth's Atmosphere," Radiat. Prot. Dosimetry, vol. 130, p. 399, 2008.
[41] D F Smart and M A Shea, "World grid of calculated cosmic ray vertical cutoff rigidities from IGRF 2010," in partial fulfillment of FAA Procurement AAM-610-12-0157, 2012.
[42] K. Copeland, "CARI-7A: Development and validation," Radiat. Prot. Dosimetry, vol. 175, pp. 1-13, 2017.
[43] C. C. Finlay, S. Maus, C. D. Beggan, T. N. Bondar, A. Chambodut, T. A. Chernova, et al., "International Geomagnetic Reference Field: the eleventh generation," Geophys. J. Int., vol. 183, pp. 1216-1230, 2010.
[44] B. J. Lewis, L. G. I. Bennett, A. R. Green, A. Butler, M. Desormeaux, F. Kitching, et al., "Aircrew dosimetry using the predictive code for aircrew radiation exposure (PCAIRE)," Radiat. Prot. Dosimetry, vol. 116, pp. 320-326, 2005.
[45] UNSCEAR, "Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2000 report to the General Assembly, with scientific annexes, Volume I: Sources, Annex E," 2000.
[46] ICRP, "The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103," Ann. ICRP, vol. 37, 2007.
[47] ICRP, "1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60," Ann. ICRP, vol. 21, 1991.
[48] E. C. Council, "Directive 96/29/EURATOM of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiation.," Off. J. Eur. Commun, vol. 39, p. L159, 1996.
[49] H. Yasuda, T. Sato, H. Yonehara, T. Kosako, K. Fujitaka, and Y. Sasaki, "Management of cosmic radiation exposure for aircraft crew in Japan," Radiat. Prot. Dosimetry, vol. 146, pp. 1-3, 2011.
[50] P. Goldhagen, M. Reginatto, T. Kniss, J. W. Wilson, R. C. Singleterry, I. W. Jones, et al., "Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane," Nuclear Instruments and Methods in Physics Research A, vol. 476, pp. 42-51, 2002.
[51] K. Yajima, H. Yasuda, M. Takada, T. Sato, T. Goka, H. Matsumoto, et al., "Measurements of Cosmic-Ray Neutron Energy Spectra from Thermal to 15 MeV with Bonner Ball Neutron Detector in Aircraft," Journal of Nucclear Science and Technology, vol. 47, pp. 31-39, 2010.
[52] C. J. Mertens, G. P. Gronoff, R. B. Norman, B. M. Hayes, T. C. Lusby, T. Straume, et al., "Cosmic radiation dose measurements from the RaD-X flight campaign," Space Weather, vol. 14, pp. 874-898, 2016.
[53] C. Birattari, A. Ferrari, C. Nuccetelli, M. Pelliccioni, and M. Silari, "An extended range neutron rem counter," Nucl. Instr. and Meth. A., vol. 297, pp. 250-257, 1990.
[54] U. J. Schrewe, "Radiation Exposure Monitoring in Civil Aircraft," Nucl. Instrum. Methods Phys. Res. A, vol. 422, pp. 621-625, 1999.
[55] U. J. Schrewe, "ACREM — Air Crew Radiation Exposure Monitoring: Summary of Results from Calibrations and TEPC Measurements.," PTB-6.31–1999–2 (Physikalisch Technische Bundesanstalt, Braunschweig, Germany), Oct. 1999.
[56] U. J. Schrewe, "Global measurements of the radiation exposure of civil air crew from 1997 to 1999," Radiat. Prot. Dosimetry, vol. 91, pp. 347-364, 2000.
[57] F. Wissmann, "Long-term measurements of H*(10) at aviation altitudes in the northern hemisphere," Radiat. Prot. Dosimetry, vol. 121, pp. 347-357, 2006.
[58] J. F. Bottollier-Depois, P. Beck, M. Latocha, V. Mares, D. Matthiä, W. Rühm, et al., "Comparison of codes assessing radiation exposure of aircraft crew due to galactic cosmic radiation.," EURADOS Report 2012-03, 2012.
[59] K. A. Copeland, "Cosmic ray particle fluences in the atmosphere resulting from primary cosmic ray heavy ions and their resulting effects on dose rates to aircraft occupants as calculated with MCNPX 2.7.0.," Doctoral Thesis, Royal Military College of Canada, Kingston, Ontarion, Canada, 2014.
[60] K. O'Brien and W. Friedberg, "Atmosphere cosmic rays at aircraft altitudes," Enviroment International, vol. 20, pp. 645-663, 1994.
[61] UNSCEAR, "Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2008 report to the General Assembly, with scientific annexes, Volume I: Sources, Annex B," 2008.
[62] H. Zeeb, G. P. Hammer, and M. Blettner, "Epidemiological investigations of aircrew: an occupational group with low-level cosmic radiation exposure," J. Radiol. Prot., vol. 32, pp. N15-N19, 2012.
[63] International Standards Organization, Space Environment (Natural and Artificial) - Galactic Cosmic Ray Model (ISO 15930:2004), Geneva, Switzerland, 2004.
[64] P. M. O'Neill, "Badhwar–O’Neill 2010 galactic cosmic ray flux model—revised," IEEE Trans. Nucl. Sci., vol. 57, pp. 3148-3153, 2010.
[65] D. B. Pelowitz, "MCNPX User's Manual, Version 2.7.0. Report LA-CP-11-00438 (Los Alamos, NM: Los Alamos National Laboratory)," 2011.
[66] NOAA, "U.S. Standard Atmosphere, 1976," (NOAA-S/T 76-1562) (Washington, DC: NOAA) 1976.
[67] D. F. Smart and M. A. Shea, "The limitations of using vertical cutoff rigidities determined from the IGRF magnetic field models for computing aircraft radiation dose," Adv. Space Res., vol. 32, pp. 95-102, 2003.
[68] C. Störmer, "The Polar Aurora," London: Oxford University Press, 1950.
[69] Federal Aviation Administration, Galactic Radiation Received In Flight: http://jag.cami.jccbi.gov/cariprofile.asp (2019/10).
[70] V. Mares, T. Maczka, G. Leuthold, and W. Rühm, "Air crew dosimetry with a new version of EPCARD," Radiat. Prot. Dosimetry, vol. 136, pp. 262-266, 2009.
[71] H. Schraube, G. Leuthold, W. Heinrich, S. Roesler, V. Mares, and G. Schraube, "EPCARD – European program package for the calculation of aviation route doses, User's manual," Neuherberg, GermanyGSF-National Research Center, 2002.
[72] G. D. Badhwar, "The Radiation Environment in Low-Earth Orbit " Radiat. Res., vol. 148, pp. S3-S10, 1997.
[73] G. D. Badhwar, P. M. O'Neill, and A. G. Troung, "Galactic Cosmic Radiation Environment Models," AIP Conference Proceedings, vol. 552, p. 1179, 2001.
[74] A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, "FLUKA: A Multi-Particle Transport Code," CERN-2005-10, INFN/TC_05/11, SLAC-R-773 (2005).
[75] G. Battistoni, S. Muraro, P. R. Sala, F. Cerutti, A. Ferrari, S. Roesler, et al., "The FLUKA code: Description and benchmarking," AIP Conf.Proc., vol. 896, pp. 31-49, 2007.
[76] V. Mares and G. Leuthold, "Altitude-dependent dose conversion coefficients in EPCARD," Radiat. Prot. Dosimetry, vol. 126, pp. 581-584, 2007.
[77] R. Bütikofer, E. O. Flückiger, and L. Desorgher "Characteristics of near real-time cutoff calculations on a local and global scale" Proceedings of the 30th International Cosmic Ray Conference, Mérida, Mexico, 2007.
[78] EPCARD online: https://www.helmholtz-muenchen.de/en/epcard-neu/index.html (2019/10).
[79] J. F. Bottollier-Depois, P. Blanchard, I. Clairand, P. Dessarps, N. Fuller, P. Lantos, et al., "An operational approach for aircraft crew dosimetry: the SIEVERT system," Radiat. Prot. Dosimetry, vol. 125, pp. 421-424, 2007.
[80] SIEVERTPN: https://www.sievert-system.org/?locale=en (2019/10).
[81] AVIDOS-WEB: http://avidos.seibersdorf-laboratories.at/V1-0/client/avidos.html (2019/10).
[82] T. K. Gaisser, M. Honda, P. Lipari, and T. Stanev, "Primary spectrum to 1 TeV and beyond," Proceedings of ICRC pp. 643-646, 2001.
[83] G. Battistoni, A. Ferrari, and S. Muraro, "Primary cosmic rays fluxes in FLUKA," INFN Report (DOSMAX Work Contract No. 451004269), 2004.
[84] M. Pelliccioni, "Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code," Radiat. Prot. Dosimetry, vol. 88, pp. 279-297, 2000.
[85] T. Sato, H. Yasuda, K. Niita, A. Endo, and L. Sihver, "Development of PARMA: PHITS-based Analytical Radiation Model in the Atmosphere.," Radiat. Res., vol. 170, pp. 244-259, 2008.
[86] T. Sato, "Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.," PLoS One, vol. 10, 2015.
[87] K. Niita, T. Sato, H. Iwase, H. Nose, H. Nakashima, and L. Sihver, "PHITS—a particle and heavy ion transport code system," Radiat. Meas., vol. 41, 2006.
[88] D. Matthiä, T. Berger, A. I. Mrigakshi, and G. Reitz, "A ready-to-use galactic cosmic ray model," Adv. Space Res., vol. 51, pp. 329-338, 2013.
[89] EXPACS homepage: https://phits.jaea.go.jp/expacs/ (2019/09).
[90] ICRP, "Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116," Ann. ICRP, vol. 40, pp. 2-5, 2010.
[91] ICRP, "Assessment of Radiation Exposure of Astronauts in Space. ICRP Publication 123," Ann. ICRP, vol. 42, 2013.
[92] JISCARD EX homepage: http://www.jiscard.jp/index.shtml (2019/09).
[93] A.-L. Li, W.-F. Pan, and R.-J. Sheu, "Development, validation and demonstration of the NTHU flight dose calculator," Radiat. Prot. Dosimetry, vol. 180, pp. 134-137, 2018.
[94] 李安倫, "台灣飛航輻射劑量的研究與評估程式的開發," 國立清華大學, 碩士論文, 2017.
[95] F. Ballarini, G. Battistoni, F. Cerutti, A. Empl, A. Fass`o, A. Ferrari, et al., "Nuclear models in FLUKA: present capabilities,open problems and future improvements," International Conference On Nuclear Data For Science & Technology, 2004.
[96] S. Roesler, R. Engel, and J. Ranft "The Monte Carlo Event Generator DPMJET-III" Monte Carlo 2000 conference, Lisbon, Portugal, 23-26 Oct. 2000.
[97] E. Cuccoli, A. Ferrari, and G. C. Panini, 1991.
[98] G. Battistoni, A. Ferrari, M. Pelliccioni, and R. Villari, "Monte Carlo calculation of the angular distribution of cosmic rays at flight altitudes," Radiat. Prot. Dosimetry, vol. 112, pp. 331-343, 2004.
[99] S. Roesler, W. Heinrich, and H. Schraube, "Monte Carlo calculation of the radiation field at aircraft altitudes," Radiat. Prot. Dosimetry, vol. 98, pp. 367-388, 2002.
[100] G. D. Badhwar and P. O'Neill, "Galactic cosmic radiation model and its applications.," Adv. Space Res., vol. 17, pp. 7-17, 1996.
[101] G. Hubert, M. T. Pazianotto, and C. A. Federico, "Modeling of ground albedo neutrons to investigate seasonal cosmic ray‐induced neutron variations measured at high‐altitude stations," Journal of Geophysical Research, vol. 121, pp. 186-201, 2016.
[102] J. M. Clem, G. D. Angelis, P. Goldhagen, and J. W. Wilson, "New calculations of the atmospheric cosmic radiation field--results for neutron spectra," Radiat. Prot. Dosimetry, vol. 110, pp. 423-428, 2004.
[103] J. M. Clem, G. D. Angelis, P. Goldhagen, and J. W. Wilson, "Preliminary validation of computational procedures for a new atmospheric ionizing radiation (AIR) model," Adv. Space Res., vol. 32, pp. 27-33, 2003.
[104] R. J. McConn, C. J. Gesh, R. T. Pagh, R. A. Rucker, and R. G. Williams, "Compendium of Material Composition Data for Radiation Transport Modeling.," PNNL-15870 Rev, vol. 1, 2011.
[105] FLUKA Special source: cosmic rays: http://www.fluka.org/fluka.php?id=man_onl&sub=102 (2019/09).
[106] M. Pelliccioni and S. Roesler, Conversion coefficients for high-energy radiation calculated using the FLUKA Code, Available at: http://www.fluka.org/fluka.php?id=examples&sub=example4 (2019/10).
[107] ICRP, "Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74," Ann. ICRP, vol. 26, 1996.
[108] S. Roesler and G. R. Stevenson, "deq99.f - A FLUKA user-routine converting fluence into effective dose and ambient dose equivalent," 2006.
[109] P. Goldhagen, J. M. Clem, and J. W. Wilson, "The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude," Radiat. Prot. Dosimetry, vol. 110, pp. 387-392, 2004.
[110] P. Goldhagen, J. M. Clem, and J. W. Wilson, "Recent results from measurements of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 airplane and on the ground," Adv. Space Res., vol. 32, pp. 35-40, 2003.
[111] T. Sato and K. Niita, "Analytical Functions to Predict Cosmic-Ray Neutron Spectra in the Atmosphere," Radiat. Res., vol. 166, pp. 544-555, 2006.
[112] 行政院原子能委員會輻射偵測中心, "輻安預警自動監測月報," 2018/06.
[113] Balloon Rides to Near-Space: https://www.space.com/23291-space-tourism-balloon-flights.html (2019/09).
[114] B. J. Lewis, M. J. McCall, A. R. Green, L. G. I. Bennett, M. Pierre, U. J. Schrewe, et al., "Aircrew exposure from cosmic radiation on commercial airline routes," Radiat. Prot. Dosimetry, vol. 93, pp. 293-314, 2001.
[115] Oulu cosmic ray station: http://cosmicrays.oulu.fi/ (2019/09).
[116] Large Chalk River BF3 Proportional Counter: https://www.orau.org/ptp/collection/proportional%20counters/bf3chalklarge.htm (2020/03).
[117] I. G. Usoskin, A. Gil, G. A. Kovaltsov, A. L. Mishev, and V. V. Mikhailov, "Heliospheric modulation of cosmic rays during the neutron monitor era Calibration using PAMELA data for 2006–2010," J. Geophys. Res., vol. 122, 2017.
[118] 潘洧樊, "大氣層次級宇宙射線蒙地卡羅模擬及飛航劑量評估," 國立清華大學, 碩士論文, 2015.
[119] MATLAB homepage: https://ww2.mathworks.cn/products/matlab.html (2019/09).
[120] Python homepage: https://www.python.org/ (2019/09).
[121] G. van Rossum and the Python development team, The Python language reference, release 3.6.5, Python Software Foundation, 2018 (Available at: http://python.org.).
[122] PyQt 5, Python bindings for the Qt cross platform UI and application toolkit: https://pypi.org/project/PyQt5/ (2019/09).
[123] Z.-Y. Yang, P.-C. Lai, and R.-J. Sheu, "Update and New Features of NTHU Flight Dose Calculator: A Tool for Estimating Aviation Route Doses and Cumulative Spectra of Cosmic Rays in Atmosphere," IEEE Trans. Nucl. Sci., vol. 66, pp. 1931-1941, 2019.
[124] FlightAware: https://zh-tw.flightaware.com/ (2019/09).
[125] Flightradar24: https://www.flightradar24.com/25.05,121.53/8 (2019/11).
[126] M. A. Shea and D. F. Smart, "A Wold Grid of Calculated Cosmic Ray Vertical Cutoff Rigidities for 1980. 0," Proceedings from the 18th International Cosmic Ray Conference, vol. 3, pp. 415-418, 1983.
[127] N. W. Peddie, "International Geomagnetic Reference Field: the Third Generation," J. Geomag. Geoelectr., vol. 34, pp. 309-326, 1982.
[128] D. F. Smart and M. A. Shea, "World Grid of Calculated Cosmic Ray Vertical Cutoff Rigidities for Epoch 1990.0," Proceedings of the 25th International Cosmic Ray Conference, vol. 2, pp. 401-404, 1997.
[129] C. E. Barton, "International Geomagnetic Reference Field: the Seventh Generation," J. Geomag. Geoelectr., vol. 49, pp. 123-148, 1997.
[130] D. F. Smart and M. A. Shea, "World Grid of Calculated Cosmic Ray Vertical Cutoff Rigidities for Epoch 2000.0," Proceedings, 30th International Cosmic Ray Conference, vol. 1, pp. 737-740, 2008.
[131] S. Macmillan, S. Maus, T. Bondar, A. Chambodut, V. Golovkov, R. Holme, et al., "The 9th generation international geomagnetic reference field," Geophys. J. Int., vol. 155, pp. 1051-1056, 2003.
[132] A. Chulliat, P. Alken, M. Nair, A. Woods, S. Maus, S. Macmillan, et al., "The US/UK World Magnetic Model for 2015-2020: Technical Report," National Geophysical Data Center, NOAA, 2015.
[133] Boeing 747 Pilot Operation Handbook: http://altairva-fs.com/fleet/poh/Boeing%20747%20POH.htm (2019/10).
[134] Anaconda homepage: https://www.anaconda.com/ (2019/10).
[135] Pyinstaller: https://pypi.org/project/PyInstaller/ (2019/10).
[136] ISO, "Dosimetry for exposures to cosmic radiation in civilian aircraft—Part 4: Validation of codes," ISO 20785-4, 2019.
[137] H. Schraube, W. Heinrich, G. Leuthold, V. Mares, and S. Roesler, "Aviation Route Dose Calculation and its Numerical Basis," Proc. 10th Int. Cong. International Radiation Protection Association, pp. T-4-4, P-1a-45, 2000.
[138] C. J. Mertens, M. M. Meier, S. Brown, R. B. Norman, and X. Xu, "NAIRAS aircraft radiation model development, dose climatology, and initial validation.," Space Weather, vol. 11, pp. 603-635, 2013.
[139] J. W. Wilson, F. F. Badavi, F. A. Cucinotta, J. L. Shinn, G. D. Badhwar, R. Silberberg, et al., "HZETRN: Description of a free-space ion and nucleon transport and shielding computer program," NASA Technical Paper, NASA TP-3495, 1995.
[140] L. E. Alvarez, S. D. Eastham, and S. R. H. Barrett, "Radiation dose to the global flying population," J. Radiol. Prot., vol. 36, pp. 93-103, 2016.
[141] N. Simone, M. Stettler, and S. Barrett, "Rapid estimation of global civil aviation emissions with uncertainty quantification," Transp. Res. D, vol. 25, pp. 33-41, 2013.
[142] K. Abe, T. Sanuki, K. Anraku, Y. Asaoka, H. Fuke, S. Haino, et al., "Measurements of proton, helium and muon spectra at small atmospheric depths with the BESS spectrometer," Physics Letters B, vol. 564, pp. 8-20, 2003.
[143] T. K. Gaisser, Cosmic Rays and Particle Physics. Cambridge, UK: Cambridge University Press, 1991.
[144] F. Wissmann, M. Reginatto, and T. Moller, "The ambient dose equivalent at flight altitudes: a fit to a large set of data using a Bayesian approach," J. Radiol. Prot., vol. 30, pp. 513-524, 2010.
[145] B. J. Lewis, M. Desormeaux, A. R. Green, L. G. I. Bennett, A. Butler, M. McCall, et al., "Assessment of aircrew radiation exposure by further measurements and model development," Radiat. Prot. Dosimetry, vol. 111, pp. 151-171, 2004.
[146] RVSM Monitoring Frequently Asked Questions: https://medium.com/@BobbyMiller3/rvsm-monitoring-frequently-asked-questions-abad76340893 (2019/09).
[147] Z.-Y. Yang and R.-J. Sheu, "Effects of flight route variation and great-circle approximation on aviation dose assessment for popular flights from Taiwan," Radiat. Prot. Dosimetry, vol. 184, pp. 79-89, 2019.
[148] A. Taber and E. Normand, "Single Event Upset in Avionics," IEEE Trans. Nucl. Sci., vol. 40, pp. 120-126, 1993.
[149] A. H. Johnston, "Radiation Damage of Electronic and Optoelectronic Devices in Space," 2000.
[150] T. Nakamur, M. Baba, E. Ibe, Y. Yahagi, and H. Kameyama, Terrestrial Neutron-Induced Soft Errors in Advanced Memory Devices, 2008.
[151] ALTERA, "Introduction to Single-Event Upsets," 2013.
[152] Australian Transport Satety Bureau, "Aviation Occurrence Investigation, In-flight upset 154 km west of Learmonth", WA 7 October 2008 VH-QPA Airbus A330-303.
[153] C. S. Dyer, S. N. Clucas, C. Sanderson, A. D. Frydland, and R. T. Green, "An Experimental Study of Single-Event Effects Induced in Commercial SRAMs by Neutrons and Protons From Thermal Energies to 500 MeV," IEEE Trans. Nucl. Sci., vol. 51, pp. 2817-2824, 2004.
[154] E. L. Petersen, J. C. Pickel, J. H. Adams, and E. C. Smith, "Rate prediction for single event effects," IEEE Trans. Nucl. Sci., vol. 39, pp. 1577-1599, 1992.
[155] B. Gersey, R. Wilkins, H. Huff, R. C. Dwivedi, B. Takala, J. O’Donnell, et al., "Correlation of Neutron Dosimetry Using a Silicon Equivalent Proportional Counter Microdosimeter and SRAM SEU Cross Sections for Eight Neutron Energy Spectra," IEEE Trans. Nucl. Sci., vol. 50, pp. 2363-2366, 2003.
[156] Κ. Johansson, P. Dyreklev, Β. Granbom, M.-C. Calvet, S. Fourtine, and O. Feuillatre, "In-Flight and Ground Testing of Single Event Upset Sensitivity in Static RAMS," IEEE Trans. Nucl. Sci., vol. 45, pp. 1628-1632, 1998.
[157] M. S. Gordon, P. Goldhagen, K. P. Rodbell, T. H. Zabel, H. H. K. Tang, J. M. Clem, et al., "Measurement of the Flux and Energy Spectrum of Cosmic-Ray Induced Neutrons on the Ground," IEEE Trans. Nucl. Sci., vol. 51, pp. 3427-3434, 2004.
[158] F. Wang and V. D. Agrawal, "Single Event Upset: An Embedded Tutorial," vol. Proc. 21st Int Conf on VLSI Design IEEE Computer Society, pp. 1063-9667, 2008.
[159] E. L. Petersen, "Approaches to proton single-event rate calculations," IEEE Trans. Nucl. Sci., vol. 43, pp. 496-504, 1996.
[160] Civil Aeronautics Administration. Civil Air Transportation Statistics 2017. Ministry of Transportation and Communications, Executive Yuan, Taiwan, ROC; 2018.
[161] EVA to Launch Houston Flights in June 2015: https://www.fly2houston.com/newsroom/releases/eva-launch-houston-flights-june-2015/ (2019/10).
[162] Wikipedia, Longest flights: https://en.wikipedia.org/wiki/Longest_flights (2019/09).
[163] Wikipedia, Jet_stream: https://en.wikipedia.org/wiki/Jet_stream (2019/09).
[164] A. Mishev and I. Usoskin, "Numerical model for computation of effective and ambient dose equivalent at flight altitudes," J. Space Weather Space Clim., vol. 5, p. A10, 2015.
[165] R. S. Witte and J. S. Witte, Statistics, 11th ed. New Jersey: Wiley, 2017.
[166] J. L. Rodgers and W. A. Nicewander, "Thirteen Ways to Look at the Correlation Coefficient," The American Statistician, vol. 42, pp. 59-66, 1988.
[167] D. E. Hinkle, W. Wiersma, and S. G. Jurs, Applied Statistics for the Behavioral Sciences. 5th ed. Boston: Houghton Mifflin, 2003.
[168] Z.-Y. Yang and R.-J. Sheu, "An in-depth analysis of aviation route doses for the longest distance flight from Taiwan," Radiat. Phys. Chem., vol. 168, p. 108548, 2020.
[169] UNSCEAR, "United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 1993 Report to the General Assembly, with Scientific Annexes," 1993.
[170] W. Friedberg and K. Copeland, "What Aircrews Should Know About Their Occupational Exposure to Ionizing Radiation," DOT/FAA/AM-03/16, U.S. Department of Transportation, 2003.
[171] Bureau of Transportation Statistics Data Library: Aviation: http://www.transtats.bts.gov (2019/09).
[172] W. B. Oatway, A. L. Jones, S. Holmes, S. Watson, and T. Cabianca, "Ionising Radiation Exposure of the UK Population: 2010 Review," Public Health England, PHE-CRCE-026, 2016.
[173] S. M. Warner-Jones, K. B. Shaw and J. S. Hughes, “Survey into the Radiological Impact of the Normal Transport of Radioactive Material by Air. Final Report March 2003. ” Chilton, NRPB-W39, 2003.
[174] J. F. Bottollier-Depois, Q. Chau, P. Bouisset, G. Kerlau, L. Plawinski, and L. Lebaron-Jacobs, "Assessing Exposure to Cosmic Radiation during Long-haul Flights," Radiat. Res., vol. 153, pp. 526-532, 2000.
[175] D. Wollschläger, G. P. Hammer, T. Schafft, S. Dreger, M. Blettner, and H. Zeeb, "Estimated radiation exposure of German commercial airline cabin crew in the years 1960–2003 modeled using dose registry data for 2004–2015," J Expo. Sci. Environ. Epidemiol., vol. 28, pp. 275-280, 2018.
[176] 交通部民用航空局, "民航統計年報," 2006-2018.
[177] 交通部民用航空局, "航空器飛航作業管理規則," 2018.
[178] 12天飛5國的血汗班表,疲勞航班把華航機師逼上罷工路, https://www.twreporter.org/a/china-airline-pilot-strike (2019/11).
[179] TVBS新聞網, 華航機師工會:協商已完成,簽約完就馬上停止罷工, https://news.tvbs.com.tw/life/1082906 (2019/10).
[180] Federal Aviation Administration. General operating and flight rules. Washington, DC: US Government Publishing Office; 14 CFR Part 91, 2014.
[181] Federal Aviation Administration. Flight and Duty Limitations and Rest Requirements: Flightcrew Members, DC: US Government Publishing Office; 14 CFR Part 117, 2017.
[182] 交通部民用航空局, "航空公司空勤組員飛時管理專案檢查報告," 2015.
[183] S. Boslaugh and P. A. Watters, Statistics in a Nutshell A Desktop Quick Reference: O'Reilly Media, 2008.
[184] IBM SPSS: https://www.ibm.com/tw-zh/analytics/spss-statistics-software (2019/9).
[185] Wikipedia, Standard score: https://en.wikipedia.org/wiki/Standard_score (2019/10).
[186] 原子能委員會, "全國輻射工作人員劑量資料統計年報," 2018.
[187] Z.-Y. Yang and R.-J. Sheu, "A comprehensive approach for estimating collective and average effective doses of galactic cosmic radiation received by pilots," Health Physics, (Accepted for publication on 2020/02/13).
[188] ISO, "Dosimetry for exposures to cosmic radiation in civilian aircraft—Part 1: Conceptual basis for measurements," ISO/DIS 20785-1, 2019.
[189] ISO, "Dosimetry for exposures to cosmic radiation in civilian aircraft—Part 2: Characterization of instrument response," ISO/DIS 20785-2, 2019.
[190] ISO, "Dosimetry for exposures to cosmic radiation in civilian aircraft—Part 3: Measurements at aviation altitudes," ISO 20785-3, 2015.
[191] HAWK TEPC Enviromental Monitor: https://www.fwt.com/detector/fw-ad1ds.htm (2019/12).
[192] Far West Technology, Inc., Model LET-SW5 Operation manual, 2010.
[193] 趙祥萍, "組織等效比例計數器應用於貝他粒子與鄂惹電子射出核種之微劑量研究," 國立清華大學, 碩士論文, 2010.
[194] H. H. Rossi and M. Zaider, Microdosimetry and Its Applications. NY, USA: Springer-Verlag Berlin Heidelberg, 1996.
[195] M. Latocha, "Real time radiation dose assessment at civil flight altitudes due to galactic cosmic rays and spontaneous solar particle events," PhD, The Henryk Niewodniczański, Institute of Nuclear Physics, Polish Academy of Sciences, Austria, 2017.
[196] G. C. Taylor, R. D. Bentley, N. A. Horwood, R. Hunter, R. H. Iles, J. B. L. Jones, et al., "TEPC measurements in commercial aircraft," Radiat. Prot. Dosimetry, vol. 110, pp. 381-386, 2004.
[197] J. F. Bottollier-Depois, F. Trompier, I. Clairand, F. Spurny, D. Bartlett, P. Beck, et al., "Exposure of aircraft crew to cosmic radiation on-board intercomparison of various dosemeters," Radiat. Prot. Dosimetry, vol. 110, pp. 411-415, 2004.
[198] A. Ferrari, M. Pelliccioni, and R. Villari, "Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model," Radiat. Prot. Dosimetry, vol. 108, pp. 91-105, 2004.
[199] K. Copeland and W. Atwell, "Influence of Aircraft Self-Shielding on World-Wide Calculations of Effective Dose Rates to Occupants," presented at the 48th International Conference on Environmental Systems, Albuquerque, US-NM, 2018.
[200] A. Ferrari, M. Pelliccioni, and R. Villari, "A mathematical model of aircraft for evaluating the effects of shielding structure on aircrew exposure," Radiat. Prot. Dosimetry, vol. 116, pp. 331-335, 2005.
[201] G. Hubert, M. T. Pazianotto, C. A. Federico, and P. Ricaud, "Analysis of the Forbush Decreases and Ground‐Level Enhancement on September 2017 Using Neutron Spectrometers Operated in Antarctic and Midlatitude Stations," JGR Space Physics, vol. 124, pp. 661-673, 2019.
[202] T. Sato, A. Nagamatsu, H. Ueno, R. Kataoka, S. Miyake, K. Takeda, et al., "Comparison of cosmic-ray environments on Earth, Moon, Mars and in spacecraft using phits," Radiat. Prot. Dosimetry, vol. 180, pp. 146-149, 2018.