簡易檢索 / 詳目顯示

研究生: 三政鴻
San, Cheng-Hung
論文名稱: 多尺度分析鋰離子/鋰空氣電池離子傳輸與性能提升
Multi-scale Analysis of Ionic Transport and Performance Promotion for Lithium-ion/ Lithium-air Batteries
指導教授: 洪哲文
Hong, Che-Wun
口試委員: 陳俊勳
Chen, Chiun-Hsun
彭裕民
Peng, Yu-Min
薛康琳
Hsueh, Kan-Lin
葉宗洸
Yeh, Tsung-Kuang
鄭欽獻
Cheng, Chin-Hsien
洪哲文
Hong, Che-Wun
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 94
中文關鍵詞: 鋰離子電池鋰空氣電池
外文關鍵詞: Lithium-ion batteries, Lithium-air batteries
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰電池是目前最廣為應用的能源儲放裝置之一,自小型的隨身攜帶型電子裝置,乃至於電動車的發展,鋰電池都扮演不可或缺的角色。許多機構急迫需要針對鋰電池內部的材料,像是陰極、電解質、和陽極等各方面做性能上的改進。因鋰離子電池本身受限於比電容量大小的限制,故有學者提出了鋰空氣電池的概念與雛形。本論文研究,欲針對鋰空氣電池最關鍵的空氣極氧還原作用,以及鋰離子在電解質內部的傳輸作用作探討。在鋰離子電池部分,則針對電池內部(陽極/電解質/陰極)的電解離子傳輸、應力應變、有效擴散係數、離子電導度、與整體性能表現作詳細的研究。
    首先,以量子化學針對鋰空氣電池空氣極部分,研究以奈米碳管吸附與參雜白金的方式,比較兩種不同形式的白金催化方式,說明白金搭配奈米碳管在鋰空氣電池空氣極的氧還原作用機制。研究結果說明,白金參雜或吸附奈米碳管材料,與純粹的奈米碳管相比,皆能有效降低能隙大小,有助於空氣極電子傳導與電子雲分佈的催化作用,而白金吸附與參雜的催化作用比較上,利用白金參雜奈米碳管材料,其與氧分子的吸附能大小更優於白金吸附奈米碳管材料。因而進一步研究利用參雜氮原子方式以取代昂貴白金原子,希望能有效降低製造成本,且達到有效的氧還原作用。研究結果發現,以氮參雜奈米碳管材料,與純粹的奈米碳管比較,能有效降低能隙大小,雖然與白金參雜奈米碳管材料相比,氮參雜奈米碳管材料的吸附能沒有白金參雜奈米碳管來的好,但其承受的電池放電過程所產生的熱效應,以及製作成本來說,仍可作為日後研究鋰空氣電池空氣極材料。
    其次,在分子尺度研究上,因鋰離子電池在充放電過程,會產生電解質的穿刺破壞作用,因此本文針對鋰離子電池內的電解質材料,以分子動力學方法,設計聚氧化乙烯(PEO)分子構造提供離子傳導通道,另結合聚苯乙烯(PS)以提供結構強度,做最佳化的分析與設計。本文提出4種不同的PS質量分率(0%、30%、50%、70%),探討鋰離子電池電解質材料的離子傳導與楊氏係數關係。由離子傳導作用結果說明,當PS的質量分率增加,則離子傳導率則會隨著下降,因鋰離子在電解質內部的傳輸作用遞減的緣故所引起,此可由鋰離子與氧原子的徑分佈函數(RDF)看出。另一方面,不同PS質量分率造成電解質材料的楊氏係數會隨著PS的質量分率增加也隨著增加的趨勢,此乃因於材料內部的凡得瓦力與原子勢能上升的緣故。由以上分析,考慮離子傳導與結構強度間需要做一PEO與PS比例間的取捨,由優化結果顯示,大概介於PS質量分率40~50%的參雜比例下,不但可兼顧離子傳導性,亦可考量到鋰離子電池在多次充放電下,楊氏係數佳的材料所承受的損壞情況也可降低。
    最後,在巨觀尺度分析上,本論文研究鋰離子電池整體的性能表現,針對電池放電過程,自陽極、電解質、乃至陰極做固態與液態情況下,材料、離子與電流平衡分析,研究著重可能影響電池充放電過程的各項參數分析,如操作溫度、電解質濃度、放電率大小以及陰極材料等,做詳細分析與研究,最終再做參數優化與整體性能提昇設計建議。


    Lithium batteries are one of the most popular energy storage devices presently. From portable electronics to electric vehicles, lithium batteries play the key role as the major power source. Because of the fundamentally low electric capacity limit in lithium-ion batteries (LIBs), brand new lithium-air batteries (LABs) with embryonic forms are proposed as a substitute for future batteries. This research intends to set up the general model to study the ionic conductivity, effective diffusion coefficient, stress-strain analysis and to predict the overall performance of lithium batteries.
    First of all, the quantum scale analysis was conducted to study the oxygen reduction reaction (ORR) mechanism at the air cathode of LABs. The results indicate that both Pt-adsorbed carbon nanotubes (CNTs) and Pt-doped CNTs are more effective in lowering the band gap than the pristine CNT. The phenomena are contributive to the electric conduction and the electron cloud distribution at the air cathode. For this reason, an N-doped CNT is proposed as a substitute for the Pt-doped CNT to lower down the band gap and also the production cost significantly. The simulation results reveal that the N-doped CNT obviously lowers the energy gap than the pure CNT, but still shows a slight poor performance than the Pt-doped CNT. However, the N-doped CNT shows a better specific thermal capacity than the Pt-doped CNT to reinforce the thermal effect during the charge-discharge processes.
    Secondly, from the molecular aspect, this research focuses on reinforcement of the poly electrolyte to reduce the dendrite phenomena during the charge-discharge processes of lithium ion batteries. Molecular dynamics simulations are employed to design the optimal ratio between the polyethylene oxide (PEO), which provides the ionic conductivity, and the polystyrene (PS), which provides mechanical strength in the polymeric electrolyte. Four variations of PS weight ratios (0%, 30%, 50%, 70%) are studied to predict the ionic conductivities and their Young’s modulus. The results indicate that the ionic conductivities are enhanced with the decrease of the PS weight ratio, resulting from the weakening oxygen transport effect in the internal electrolyte. On the other hand, the Young’s modulus increases with the rise of PS weight ratio, resulting from enhancing the internal Van der Waal’s force and the inter-molecular potential. For this reason, a clear prediction of an optimal PEO-PS weight ratio can be determined to design the optimal electrolyte for the LIBs. The result indicates that if the PS weight ratio is chosen between range of 40% and 50%, the electrolytic material can avoid dendrite defects without compromising the ionic conductivity significantly for lithium-ion batteries.
    Finally, a macro-scale performance study was conducted to predict the overall performance for the lithium-ion batteries. The anode, the electrolyte, and the cathode material effects are taken into consideration. This part combines the microscopic molecular dynamics (MD) simulation with the traditional macroscopic computational mass transfer (CMT) to predict the performance of various lithium battery designs. Molecular simulations are employed to predict the diffusion coefficients and ionic conductivities of Li ions in the porous anode, cathode and electrolytes under different salt concentrations and operation temperatures. The MD results are input to the CMT code, which is based on the balance equations of current, charge and materials, with the Bulter-Volmer equation to predict the battery performance. Two kinds of cathode materials, LiMn2O4 and LiFePO4, three kinds of electrolytes, e.g., PEO, PS-PEO and EMI-TFSI ionic liquid, and three discharging conditions: 0.5C, 1C, and 2C, are chosen to carry out parametric studies. The results show that the performance can be optimized by trading-off the above parameters using this multi-scale simulation technique.

    Abstract I 摘要 III 致謝 V Contents VI List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Introduction to Li-ion/Li-air Batteries 2 1.2.1 Introduction to Li-ion Batteries 2 1.2.2 Introduction to Li-air Batteries 4 1.3 Objectives and Motivations 8 1.4 Literature Survey 9 1.4.1 Quantum Chemistry Analysis for Li-ion/Li-air Batteries 9 1.4.2 Molecular Design for Li-ion/Li-air Batteries 11 1.4.3 Performance Prediction for Li-ion Batteries 13 Chapter 2 Fundamental Theory 15 2.1 Computational Quantum Chemistry 15 2.2 Molecular Dynamics 17 2.3 Computational Mass Transfer 23 Chapter 3 Quantum Chemistry Analysis for Li-ion/Li-air Batteries 26 3.1 Quantum Chemistry Analysis for Li-ion Batteries 26 3.2 Quantum Chemistry Analysis for Li-air Batteries 27 3.2.1 Pt-adsorbed CNTs and Pt-doped CNTs 27 3.2.2 ORR at the Pt-adsorbed CNTs and Pt-doped CNTs 34 3.2.3 Comparison between the ORRs at the N-doped CNTs and Pt-doped CNTs 38 Chapter 4 Molecular Design for Li-ion/Li-air Batteries 46 4.1 Molecular Model 46 4.2 Results and Discussions on Li-ion Batteries 47 4.3 Results and Discussions on Li-air Batteries 62 Chapter 5 Performance Prediction for Li-ion Batteries 68 5.1 Molecular Dynamics Simulation for Li-ion Batteries 68 5.2 Effect of Operation Temperature 72 5.3 Effect of Electrolytes 74 5.4 Effect of Cathode Materials 77 5.5 Effect of Discharge Rate 78 Chapter 6 Conclusions and Future Work 80 6.1 Quantum Chemistry Analysis for Li-ion/Li-air Batteries 80 6.2 Molecular Design for Li-ion/Li-air Batteries 80 6.3 Performance Prediction for Li-ion Batteries 81 6.4 Future Work 82 References 84

    [1] D. Linden, T. Reddy, Handbook of Batteries, 3rd ed. McGraw Hill, New York,
    2001
    [2] Http://www.sciencedaily.com/releases/2009/12/091230024401.htm, Lithium-Air Batteries Could Displace Gasoline in Future Cars, ScienceDaily, 2009
    [3] Http://www.fuelcelltoday.com, The Fuel Cell Today Industry Review 2011, Fulmar Colour Printing Co. Ltd 2011
    [4] Y.C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli, and Y.S. Horn, “Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for
    Rechargeable Lithium-Air Batteries“, J. Am. Chem. Soc., 132, 12170-12171, 2010
    [5] C. Xu, J. Chen, Y. Cui, Q. Han, H. Choo, P.K. Liaw, and D. Wu, “Influence of the Surface Treatment on the Deposition of Platinum Nanoparticles on the Carbon Nanotubes”, Adv. Eng. Mater., 8, 1-5, 2006
    [6] J.J. Wang, G.P. Yin, J. Zhang, Z.B. Wang, Y.Z. Gao, “High Utilization Platinum Deposition on Single-Walled Carbon Nanotubes as Catalysts for Direct Methanol Fuel Cell”, Electrochim. Acta, 52, 7042-7050, 2007
    [7] J.F. Lin, A. Adame, and A.M. Kannan, “Development of Durable Platinum Nanocatalyst on Carbon Nanotubes for Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., 157, B846-B851, 2010
    [8] Z. Tang, C.K. Poh, K.K. Lee, Z. Tian, D.H.C. Chua, J. Lin, “Enhanced Catalytic Properties from Platinum Nanodots Covered Carbon Nanotubes for Proton-Exchange Membrane Fuel Cells”, J. Power Sources, 195, 155-159, 2010
    [9] J.F. Lin, V. Kamavaram, A.M. Kannan, “Synthesis and Characterization of Carbon Nanotubes Supported Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells”, J. Power Sources, 195, 466-470, 2010
    [10] Y.K. Chen, L.V. Liu, W.Q. Tian, and Y.A. Wang, “Theoretical Studies of Transition-Metal-Doped Single-Walled Carbon Nanotubes”, J. Phys. Chem. C, 115, 9306-9311, 2011
    [11] C.S. Yeung, L.V. Liu, and Y.A. Wang, “Adsorption of Small Gas Molecules onto Pt-Doped Single-Walled Carbon Nanotubes”, J. Phys. Chem. C, 112, 7401-7411, 2008
    [12] A. Kongkanand, S. Kuwabata, G. Girishkumar, and P. Kamat, “Single-Wall Carbon Nanotubes Supported Platinum Nanoparticles with Improved Electrocatalytic Activity for Oxygen Reduction Reaction“, Langmuir, 22, 2392-2396, 2006
    [13] Z. Lin, H. Chu, Y. Shen, L. Wei, H. Liu, and Y. Li, “ Rational Preparation of Faceted Platinum Nanocrystals Supported on Carbon Nanotubes with Remarkably Enhanced Catalytic Performance“, Chem. Commun., 46, 7167-7169, 2009
    [14] D. Cheng, W. Wang, and S. Huang, “Thermal Evolution of a Platinum Cluster Encapsulated in Carbon Nanotubes”, J. Phys. Chem. C, 111, 1631-1637, 2007
    [15] R. Czerw, M. Terrones, J.C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Ruhle, and D.L. Carroll, “Identification of Electron Donor States in N-Doped Carbon Nanotubes”, Nano. Lett., 1, 9-12, 2001
    [16] L.M. Cao, X.Y. Zhang, C.X. Gao, W.K. Wang,Z.L. Zhang, and Z. Zhang, “High-Concentration Nitrogen-Doped Carbon Nanotube Arrays”, Nanotechnology, 14, 931-934, 2003
    [17] Y. Tang, B.L. Allen, D.R. Kauffman, and A. Star, “ Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotube Cups“, J. Am. Chem. Soc., 131, 13200-13201, 2009
    [18] J.D. Wiggins-Camacho and K.J. Stevenson, “Effect of Nitrogen Concentration on Capacitance, Density of States, Electronic Conductivity, and Morphology of N-Doped Carbon Nanotube Electrodes”, J. Phys. Chem. C, 113, 19082-19090, 2009
    [19] N. Alexeyeva, E. Shulga, V. Kisand, I. Kink, K. Tammeveski, “Electroreduction of Oxygen on Nitrogen-Doped Carbon Nanotube Modified Glassy Carbon Electrodes in Acid and Alkaline Solutions ”, J. Electroanal. Chem., 648, 169-175, 2010
    [20] X. Hu, Z. Zhou, Q. Lin, Y. Wu, Z. Zhang, “ High Reactivity of Metal-Free Nitrogen-Doped Carbon Nanotube for the C–H Activation“, Chem. Phys Lett., 503, 287-291, 2011
    [21] T. Fujigaya, T. Uchinoumi, K. Kaneko, and N. Nakashima, “Design and Synthesis of Nitrogen-Containing Calcined Polymer/Carbon Nanotube Hybrids that Act as a Platinum-Free Oxygen Reduction Fuel Cell Catalyst“, Chem. Commun., 47, 6843-6845, 2011
    [22] K. Gong, F. Du, Z. Xia, M. Durstock, and L. Dai, “Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction”, Science, 323, 760-764, 2009
    [23] J. Wei, H. Hu, H. Zeng, Z. Zhou, W. Yang, P. Peng, “ Effects of Nitrogen Substitutional Doping on the Electronic Transport of Carbon Nanotube“, Physica E, 40, 462-466, 2008
    [24] M.D. Ganji, “Behavior of a Single Nitrogen Molecule on the Pentagon at a Carbon Nanotube Tip: A First-Principles Study”, Nanotechnology, 19, 025709-025713, 2008
    [25] E. Xu, J. Wei, K. Wang, Z. Li, X. Gui, Y. Jia, H. Zhu, D. Wu, “ Doped Carbon Nanotube Array with a Gradient of Nitrogen Concentration“, Carbon, 48, 3097-3102, 2010
    [26] Z. Chen, D. Higgins, and Z. Chen, “Nitrogen Doped Carbon Nanotubes and Their Impact on the Oxygen Reduction Reaction in Fuel Cells”, Carbon, 48, 3057-3065, 2010
    [27] C.V. Rao, C.R. Cabrera, and Y. Ishikawa, “In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction”, J. Phys. Chem. Lett., 1, 2622-2627, 2010
    [28] X. Hu, Y. Wu, H. Li, and Z. Zhang, “Adsorption and Activation of O2 on Nitrogen-Doped Carbon Nanotubes“, J. Phys. Chem. C, 114, 9603-9607, 2010
    [29] S. Yang, G.L. Zhao, and E. Khosravi, “First Principles Studies of Nitrogen Doped Carbon Nanotubes for Dioxygen Reduction”, J. Phys. Chem. C, 114, 3371-3375, 2010
    [30] Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, and P.G. Bruce, “Ionic Conductivity in Crystalline Polymer Electrolytes”, Nature, 412, 520-523, 2001
    [31] Y.G. Andreev, P.G. Bruce, “Polymer Electrolyte Structure and Its Implications”, Electrochim. Acta, 45, 1417-1423, 2000
    [32] D. Brandell, A. Liivat, H. Kasema, A. Aabloo, J.O. Thomas, “Molecular Dynamics Simulation of the LiPF6•PEO6 Structure”, J. Mater. Chem., 15, 1422-1428, 2005
    [33] A. Liivat, D. Brandell, J.O. Thomas, “A Molecular Dynamics Study of Ion-Conduction Mechanisms in Crystalline Low-Mw LiPF6•PEO6”, J. Mater. Chem., 17, 3938–3946, 2007
    [34] A. Hektor, M.K. Klintenberg, A. Aabloo, J.O. Thomas, “Molecular Dynamics Simulation of the Effect of a Side Chain On the Dynamics of the Amorphous LiPF6–PEO System”, J. Mater. Chem., 13, 214-218, 2003
    [35] S.K. Fullerton-Shirey, J.K. Maranas, “Effect of LiClO4 On the Structure and Mobility of PEO-Based Solid Polymer Electrolytes”, Macromolecules, 42, 2142-2156, 2009
    [36] J. Ennari, I. Neelov, F. Sundholm, “Molecular Dynamics Simulation of the Structure of PEO Based Solid Polymer Electrolytes”, Polymer, 41, 4057-4063, 2000
    [37] J. Ennari, L.O. Pietila, V. Virkkunen, F. Sundholm, “Molecular Dynamics Simulation of the Structure of An Ion-Conducting PEO-Based Solid Polymer Electrolyte”, Polymer, 43, 5427–5438, 2002
    [38] O. Borodin, R. Douglas, G.D. Smith, F. Trouw, S. Petrucci, “MD Simulations and Experimental Study of Structure, Dynamics, and Thermodynamics of Poly(ethylene oxide) and Its Oligomers”, J. Phys. Chem. B, 107, 6813-6823, 2003
    [39] M. Brodeck, F. Alvarez, A. Arbe, F. Juranyi, T. Unruh, O. Holderer, J. Colmenero, D. Richter, “Study of the Dynamics of Poly(ethylene oxide) by Combining Molecular Dynamic Simulations and Neutron Scattering Experiments”, J. Chem. Phys., 130, 09490810-09490814, 2009
    [40] M. Grujicic, K.M. Chittajallua, G. Cao, W.N. Roy, “An Atomic Level Analysis of Conductivity and Strength in Poly(ethylene oxide) Sulfonic Acid-Based Solid Polymer Electrolytes”, Mater. Sci. Eng. B-Adv., 117, 187-197, 2005
    [41] L.J.A. Siqueira, M.C.C. Ribeiro, “Molecular Dynamics Simulation of the Polymer Electrolyte PEO/LiClO4. I. Structural Properties”, J. Chem. Phys., 122, 1949111-1949118, 2005
    [42] L.J.A. Siqueira, M.C.C. Ribeiro, “Molecular Dynamics Simulation of the Polymer Electrolyte PEO/LiClO4. II. Dynamical Properties”, J. Chem. Phys., 125, 2149031-2149038, 2006
    [43] N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, “Solid Polymer Electrolytes Based on Polyethylene Oxide and Lithium Trifluoro-Methane Sulfonate (PEO-LiCF3SO3) Ionic Conductivity and Dielectric Relaxation”, Solid State Ionics, 179, 689– 696, 2008
    [44] D. Diddens, A. Heuer, O. Borodin, “Understanding the Lithium Transport Within A Rouse-Based Model for A PEO/LiTFSI Polymer Electrolyte”, Macromolecules, 43, 2028-2036, 2010
    [45] T. Ogawa, M. Miyano, Y. Suzuki, A. Suzuki, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, A. Miyamoto, “A Theoretical Study on Initial Processes of Li-Ion Transport At the Electrolyte/Cathode Interface A Quantum Chemical Molecular Dynamics Approach”, Jpn. J. Appl. Phys., 49, 04DP111-04DP116, 2010
    [46] B.X. Yang, J.H. Shi, K.P. Pramoda, S.H. Goh, “Enhancement of Stiffness, Strength, Ductility and Toughness of Poly(ethylene oxide) Using Phenoxy-Grafted Multiwalled Carbon Nanotube”, Nanotechnologys, 18, 125606-125612, 2007
    [47] F. Boschet, C. Branger, A. Margaillan, “Synthesis and Characterization of PS-block-PEO Associative Water-Soluble Polymers”, Eur. Polym. J., 39, 333–339, 2003
    [48] P. Yang, Y. Han, “Microphase-Separated Brushes on Square Platelets in PS-b-PEO Thin Films”, Macromolecules Rapid Communion, 30, 1509–1514, 2009
    [49] C. Neto, M. James, A.M. Telford, “On the Composition of the Top Layer of Microphase Separated Thin PS-PEO Films”, Macromolecules, 42, 4801–4808, 2009
    [50] P. Yang, X. Yu, Y. Han, “Transition Between Crystallization and Microphase Separation in PS-b-PEO Thin Film Influenced by Solvent Vapor Selectivity”, Polymer, 51, 4948-4957, 2010
    [51] V. Rejsek, P. Desbois, A. Deffieux, S. Carlotti, “Polymerization of Ethylene Oxide Initiated by Lithium Derivatives Via the Monomer-Activated Approach: Application to the Direct Synthesis of PS-b-PEO and PI-b-PEO Diblock Copolymers”, Polymer, 51, 5674-5679, 2010
    [52] W.S. Young, T.H. Epps, “Salt Doping in PEO-Containing Block Copolymers Counterion and Concentration Effects”, Macromolecules, 42, 2672-2678, 2009
    [53] D. Li, G. Saheli, M. Khaleel, H. Garmestani, “Microstructure Optimization in the Fuel Cell Electrodes Using Materials Design”, CMC: Computer, Materials, & Continua, 4, 31–42, 2006
    [54] S.F. Lee, C.W. Hong, “Computer Modeling of Ionic Conductivity in Low Temperature Doped Ceria Solid Electrolytes”, CMC: Computer, Materials, & Continua, 12, 223–235, 2009
    [55] W.H. Chen, C.W. Hong, “Nano-Array Solid Electrode Design for Photoelectrochemical Solar Cells”, CMC: Computer, Materials, & Continua, 20, 1-24, 2011
    [56] K.M. Abraham, Z. Jiang, “A Polymer Electrolyte-Based Rechargeable lithium/ Oxygen Battery”, J. Electrochem. Soc., 143, A1-A5, 1996
    [57] I. Kowalczk, J. Read, M. Salomon, “Li-Air Batteries: A Classic Example of Limitations Owing to Solubilities”, Pure Appl. Chem., 79, 851–860, 2007
    [58] J.P. Zheng, R.Y. Liang, M. Hendrickson, E. J. Plichta, “Theoretical Energy Density of Li–Air Batteries”, J. Electrochem. Soc., 155, A432-A437, 2008
    [59] J.G. Zhang, D. Wang, W. Xu, J. Xiao, R.E. Williford, “ Ambient Operation of Li/Air Batteries“, J. Power. Sources, 195, 4332–4337, 2010
    [60] T. Kuboki, T. Okuyama, T. Ohsaki, N. Takami, “Lithium-Air Batteries Using Hydrophobic Room Temperature Ionic Liquid Electrolyte”, J. Power. Sources, 146, 766–769, 2005
    [61] W. Xu, J. Xiao, J. Zhang, D. Wang, J.G. Zhang, “ Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment“, J. Electrochem. Soc., 156, A773-A779, 2009
    [62] S.D. Beattie, D.M. Manolescu, S.L. Blair, “High-Capacity Lithium–Air Cathodes
    ”, J. Electrochem. Soc., 156, A44-A47, 2009
    [63] R.E. Williford, J.G. Zhang, “ Air Electrode Design for Sustained High Power Operation of Li/Air Batteries“, J. Power. Sources, 194, 1164–1170, 2009
    [64] J.S. Hummelshoj, J. Blomqvist, S. Datta, T. Vegge, J. Rossmeisl, K.S. Thygesen,
    A.C. Luntz, K.W. Jacobsen, J.K. Nørskov, “Communications: Elementary Oxygen Electrode Reactions in the Aprotic Li-Air Battery”, J. Chem. Phys., 132, 0711011- 0711014, 2010
    [65] D. Zhang, Z. Fu, Z. Wei, T. Huang, A. Yu, “Polarization of Oxygen Electrode in Rechargeable Lithium Oxygen Batteries“, J. Electrochem. Soc., 157, A362-A365, 2010
    [66] P.M. Gomadama, J.W. Weidnera, R.A. Dougal, and R.E. White, “Mathematical Modeling of Lithium-Ion and Nickel Battery Systems”, J. Power. Sources, 110, 267–284, 2002
    [67] J. Newman, K.E. Thomas, H. Hafezi, and D.R. Wheeler, “Modeling of Lithium-Ion Batteries”, J. Power. Sources, 119, 838–843, 2003
    [68] C.H. San, and C.W. Hong, “Molecular Design of the Solid Copolymer Electrolyte Poly(styrene-b-ethylene oxide) for Lithium Ion Batteries”, CMC-Comput. Mat. Contin., 23, 101-117, 2011
    [69] M. Doyle, J. Newman, A.S. Gozdz, C.N. Schmutz, and J.M. Tarascon, “Comparison of Modeling Predictions with Experimental Data From Plastic Lithium Ion Cells”, J. Electrochem. Soc., 143, 1890-1903, 1996
    [70] P. Arora, M. Doyle, A.S. Gozdz, R.E. White, and J. Newman, “Comparison Between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries”, J. Power. Sources, 88, 219–231, 2000
    [71] M. Doyle, and Y. Fuentes, “Computer Simulations of A Lithium-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs”, J. Electrochem. Soc., 150, A706-A713, 2003
    [72] E.M. Rosas, R.V. Medrano, and A.F. Tlacuahuac, “Modeling and Simulation of Lithium-Ion Batteries”, Computers and Chemical Engineering, 35, 1937–1948, 2001
    [73] X. Zhang, W. Shyy, and A.M. Sastrya, “Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles”, J. Electrochem. Soc., 154, A910-A916, 2007
    [74] X. Zhang, A.M. Sastry, and W. Shyy, “Intercalation-Induced Stress and Heat Generation Within Single Lithium-Ion Battery Cathode Particles”, J. Electrochem. Soc., 155, A542-A552, 2008
    [75] S. Renganathan, G. Sikha, S. Santhanagopalan, and R.E. White, “Theoretical Analysis of Stresses in a Lithium Ion Cell”, J. Electrochem. Soc., 157, A155-A163, 2010
    [76] K. Smith, and C.Y. Wang, “Power and Thermal Characterization of A Lithium-Ion Battery Pack for Hybrid-Electric Vehicles”, J. Power. Sources, 160, 662–673, 2006
    [77] Y. Inui, Y. Kobayashi, Y. Watanabe, Y. Watase, and Y. Kitamura, “Simulation of Temperature Distribution in Cylindrical and Prismatic Lithium Ion Secondary Batteries”, Energy Conv. Manag., 48, 2103–2109, 2007
    [78] L. Cai, and R.E. White, “Mathematical Modeling of A Lithium Ion Battery With Thermal Effects in COMSOL Inc. Multiphysics (MP) Software”, J. Power. Sources, 196, 5985–5989, 2011
    [79] R. Spotnitz, “Simulation of Capacity Fade in Lithium-Ion Batteries”, J. Power. Sources, 113, 72-80, 2003
    [80] G. Sikha, B.N. Popov, and R.E. White, “Effect of Porosity On the Capacity Fade of a Lithium-Ion Battery”, J. Electrochem. Soc., 151, A1104-A1114, 2004
    [81] J.W. Lee, Y.K. Anguchamy, and B.N. Popov, “Simulation of Charge–Discharge Cycling of Lithium-Ion Batteries Under Low-Earth-Orbit Conditions”, J. Power. Sources, 162, 1395–1400, 2006
    [82] D. Srivastava, S.N. Atluri, “Computational Nanotechnology: A Current Perspective”, CMES: Computer Modeling in Engineering & Science, 3, 531-538, 2002
    [83] J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd Edition, Gaussian, Inc., Pittsburgh, PA 1996
    [84] I.N. Levine, Quantum Chemistry, 6th Edition, Pearson Education, Inc., Upper Saddle River, New Jersey 2009
    [85] C.W. Hong, W.H. Chen, “Computational Quantum Chemistry On the Photoelectric Characteristics of Emiconductor Quantum Dots and Biological Pigments”, CMES- Computer Modeling in Engineering & Sciences, 72, 211-228, 2011
    [86] A.D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic- Behavior”, Phys. Rev. A, 38, 3098-3100, 1988
    [87] C. Lee, W. Yang, R.G. Parr, “Development of the Colle-Salvetti Correlation- Energy Formula into A Functional of the Electron-Density”, Phys. Rev. B, 37, 785-789, 1988
    [88] S.H. Vosko, L. Wilk, M. Nusair, “Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin-Density Calculations-A Critical Analysis”,
    Can. J. Phys., 58, 1200-1211, 1980
    [89] M.J. Frisch, G.W. et al, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT., 2009
    [90] S. Shen, S.N. Atluri, “Atomic-Level Stress Calculation and Continuum-Molecular System Equivalence”, CMES: Computer Modeling in Engineering & Sciences, 6, 91-104, 2004
    [91] S.L. Mayo, B.D. Olfason, W.A. Goddard, “Dreiding - A Generic Force-Field for Molecular Simulations”, J. Phys. Chem., 94, 8897-8909, 1990
    [92] H.J.C. Berendsen, J.R. Grigera, T.P. Straatama, “The Missing Tern in Effective Pair Potentials”, J. Phys. Chem., 91, 6269-6271, 1987
    [93] J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, “Numerical-Integration of Cartesian Equations of Moion of a System with Constraints-Molecular-Dynamics of N-alkanes”, J. Comput. Phys., 23, 327-341, 1977
    [94] M.P. Allen, D.J. Tildesley, “Computer Simulation of Liquids”, Oxford University Press, New York. 1987
    [95] L. Verlet, “Computer Experiments on Classical Fluids .I. Thermoldynamical Properties of Lennard-Jones Moleculars”, Phys. Rev., 159, 98-103, 1967
    [96] Hypercube Inc., “Hyperchem Reference Manual. Chapter 8”, 2002
    [97] W. Smith, M. Leslie, T.R. Forester, “The DL_POLY User Manual”, CCLRC, Daresbury Laboratory. 2003
    [98] W. Gorecki, R. Andreani, C. Berthier, M. Armand, M. Mali, J. Roos, D. Brinkmann, “NMR, DSC, and Conductivity Study of a Poly(ethylene oxide) Complex Electrolyte: PEO(LiClO4)x”, Solid State Ionics, 295, 18-19, 1986

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE